Skip to main content
Home
luz

Main navigation

  • Home
  • research
  • scators
  • optics
  • ciencia
  • arsciencia

Breadcrumb

  1. Home
  2. scators
  3. fractals
  4. hun
  5. hun: dyncamical space

hun: dynamic programme

Profile picture for user mfg
By mfg, 9 November, 2017

In this page it shown the same corrections that hun: parameter programme, with them is possible visualize the dynamical space in the program Mandelbulber and is just necesary follow the below instructions  to the modifications works:

Start the program and chose in the flap: formulas -> formula #1 ->Real Scator Power 2, then, in the flap options mark the square Julia mode.

The iteration, now of three functions should be performed in an efficient and fast language, for example C++. In brackets here below, the recurrence relationships.

In order to include the fractal ix involving the quadratic iteration of real scators:

  • add in Mandelbulber, v 2.07-1file /src/fractal_formulas.cpp

    /* quadratic iteration in real scator algebra */

    void RealscatorPower2Iteration(CVector3 &z)

    {
    double x2 = z.x * z.x;
    double y2 = z.y * z.y;
    double z2 = z.z * z.z;
    double newx = x2 + y2 + z2 + (y2 * z2) / x2;
    double newy = 2.0 * z.x * z.y * (1 + z2 / x2 );
    double newz = 2.0 * z.x * z.z * (1 + y2 / x2 );
    z.x = newx;
    z.y = newy;
    z.z = newz;
    }

  


  • add in fractal_formulas.hpp
void RealscatorPower2Iteration(CVector3 &z);

  • add in en fractal_list.cpp
fractalList->append(sFractalDescription("Real scator Power 2", "realsca_power_2",
fast_realsca_power2,
analyticDEType,
logarithmicDEFunction,
cpixelEnabledByDefault,
10));

  • add in fractal_list.hpp

   fast_realsca_power2 = 162,


  • add in compute_fractal.cpp
case fast_realsca_power2:
{
RealscatorPower2Iteration(z);
break;
}
 
  • also modify and add in line 711
// r calculation
// r = sqrt(z.x * z.x + z.y * z.y + z.z * z.z + w * w);
switch(fractal->formula)
{
default:
{
r = sqrt(z.x * z.x + z.y * z.y + z.z * z.z + w * w);
break;
}
 
//scator magnitudes
// magnitude in real scator algebra
case fast_realsca_power2:
{
r = sqrt(z.x * z.x - z.y * z.y - z.z * z.z + (z.y * z.y * z.z * z.z) / (z.x * z.x) );
break;
}
}

  • also add: in switch (formula) line 836

case fast_realsca_power2:


  • add in /usr/share/mandelbulber2/language/ qt_data_en.ts (en dos lugares) just after "../qt_data/fractal_mandelbulb_power_2.ui"
<location filename="../qt_data/fractal_realsca_power_2.ui" line="14"/>
<location filename="../qt_data/fractal_realsca_power_2.ui" line="20"/>
 
  • copy file archivo fractal_mandelbulb_power_2.ui en /usr/share/mandelbulber2/qt_data with name

fractal_realsca_power_2.ui

  • compile and install
cd makefiles
qmake mandelbulber.pro
make all
cd ..
./install

settings

The most relevant parameteers are:
    • to stop at maximum iteration
    • to force the Delta DE distance estimation method
    • better, but not esential to have a large bailout number
In the lines here below, typical settings of a .fract Mandelbulber file
# Mandelbulber settings file
# version 2.07
# only modified parameters
[main_parameters]
aux_light_enabled_1 true;
aux_light_intensity_1 1;
aux_light_position_1 1 -3 -2;
bailout 100000;
camera 0.1 -3 0;
camera_distance_to_target 3.001666203960727;
camera_rotation 1.909152432996377 0 0;
camera_top 0 0 1;
delta_DE_method 1;
flight_last_to_render 0;
formula_1 152;
iteration_threshold_mode true;
keyframe_last_to_render 0;
use_default_bailout false;
 
English

Book traversal links for hun: código dinámico

  • hun: dyncamical space
  • Up
  • hun: 2D dynamic

Book navigation

  • fractals
    • quadratic mapping
    • visualization
    • puerta de entrada
    • hun
      • hun: parameter space
      • hun: dyncamical space
        • hun: dynamic programme
        • hun: 2D dynamic
        • hun: 3D dynamic
    • ix
  • real scator algebra
  • imaginary scator algebra
Canal RSS

Language switcher

  • Spanish
  • English

User account menu

  • Log in
Powered by Drupal