# fractals

Submitted by mfg on Tue, 07/11/2017 - 15:30

The quadratic mapping can be performed with hypercomplex scator numbers in $1+n$ dimensions.

$\underset{\textrm{confined quadratic iteration}}{\underbrace{c2i}}\overset{\textrm{parameter/dynamical space}}{\overbrace{0/\left(s_{i};x_{i},y_{i}\right)}}\underset{\textrm{algebra and dimension}}{\underbrace{\mathbb{S}_{\pm}^{1+2}}}\overset{\textrm{fractal location}}{\overbrace{\left(s;x,y\right)}}\underset{\textrm{viewpoint}}{\underbrace{\left(p_{0};p_{1},p_{2}\right)}}$
• $\textbf{c2i}$  $\textbf{c}$onfined $\left\{ \boldsymbol{2}\right\}$quadratic $\textbf{i}$terations, (that can be generalized to $\textbf{cpi}$ for a pth power polynomial or p$\rightarrow \textbf{func}$ for other $\textbf{func}$tion's mappings)
• followed by $\textbf{0}$ if the initial value of the variable is set to zero (set depicted in parameter space) or the initial value $\left(s_{i};x_{i},y_{i}\right)$ at which the constant is fixed (set depicted in dynamical space)
• followed by the number system: $\mathbb{R}$ real, $\mathbb{C}$ complex, $\mathbb{H}$ hyperbolic, $\mathbb{S}_{-}^{1+n}$  imaginary scators or $\mathbb{S}_{+}^{1+n}$  real scators (in $1+n$ dimensions), etc.
• followed by the fractal location or plane in 2D $\left(s;x,y\right)$ that is being depicted.
• followed, if necessary, by the viewpoint $\left(p_{0};p_{1},p_{2}\right)$.