Skip to main content
Home
luz

Main navigation

  • Home
  • research
  • scators
  • optics
  • ciencia
  • arsciencia

Breadcrumb

  1. Home
  2. scators
  3. fractals
  4. ix
  5. ix: parameter space
  6. ix: programme parameter space

ix: fractrace parameter programme

Profile picture for user mfg
By mfg, 7 November, 2017

The iterative process performed in the programme 'fractrace' is shown below.

It was necessary to add a small but finite number in the denominators to avoid nasty divergences in the numerical evaluation. This is not a satisfactory procedure because it introduces a small deformation that should not be there. Recall that the scator product is closed in the $\mathbb{S}_{-}^{1+n}$ set, so it should be possible to solve this problem in a better way.

/* ix - fractrace - tomotrace */
    aar = ar * ar; aai = ai * ai; aaj = aj * aj;
    double r2 = aar + aai + aaj + aai * aaj /(aar+.001);
  for (n = 1; n < zkl; n++) {   
    r2 = aar + aai + aaj + aai * aaj /(aar+.001);
    tar =  aar - aai - aaj + aai * aaj /(aar+.001) +br;
    tai = 2 * ar * ai - 2 * ai * aaj / (ar+.001) +bi;
    taj = 2 * ar * aj - 2 * aj * aai / (ar+.001) +bj;
    ar=tar; ai=tai; aj=taj;
    aar = ar * ar; aai = ai * ai; aaj = aj * aj;
    r2 = aar + aai + aaj + aai * aaj /(aar+.001);
    if (r2 > 400) { tw = n; break; }

    }
 
An example to download in .xml file to process with 'fractrace': fractrace-formula-example.zip
English

Book traversal links for ix: código parámetros fractrace

  • ix: programme parameter space
  • Up
  • ix: 2D parámetros

Book navigation

  • fractals
    • quadratic mapping
    • visualization
    • puerta de entrada
    • hun
    • ix
      • ix: parameter space
        • ix: programme parameter space
          • ix: fractrace parameter programme
        • ix: 2D parámetros
        • ix: 3D parmeter space
      • ix: espacio dinámico
  • real scator algebra
  • imaginary scator algebra
Canal RSS

Language switcher

  • Spanish
  • English

User account menu

  • Log in
Powered by Drupal