Diferencia entre revisiones de «Compleja:Zill-Cap6.4»

De luz-wiki
(Página creada con «Category:Compleja Ejercicios del capítulo 6, sección 4 del libro, A First Course in Complex Analysis with Applications de Zill y Shanahan. ---- ==Sección 6.4== ==...»)
 
Sin resumen de edición
 
(No se muestran 34 ediciones intermedias del mismo usuario)
Línea 9: Línea 9:
'''Demuestre que $z=0$ es una singularidad removible de la función dada $\left(f(z)=\frac{e^{2z}-1}{z}\right)$. Dé una definición de $f(0)$, de modo que $f$ es analítica en $z=0$.'''
'''Demuestre que $z=0$ es una singularidad removible de la función dada $\left(f(z)=\frac{e^{2z}-1}{z}\right)$. Dé una definición de $f(0)$, de modo que $f$ es analítica en $z=0$.'''


'''Procedimiento''' 
Como si la singularidad existe esta en 0, podemos usar la serie de Maclaurin para la exponencial:
Como si la singularidad existe esta en 0, podemos usar la serie de Maclaurin para la exponencial:


Línea 31: Línea 32:
f(0)=\frac{e^{2\cdot0}-1}{0}=\frac{1-1}{0}=\frac{0}{0}
f(0)=\frac{e^{2\cdot0}-1}{0}=\frac{1-1}{0}=\frac{0}{0}
\]
\]
Lo cual evidentemente la indetermina, para averiguar cual es el valor de $f$ en $0$ que permite remover la sigularidad, podemos aplicar l'Hopital o evaluar la serie.
Lo cual evidentemente la in determina, para averiguar cual es el valor de $f$ en $0$ que permite remover la sigularidad, podemos aplicar l'Hopital o evaluar la serie.
Evaluando la serie:
Evaluando la serie:
\[
\[
Línea 48: Línea 49:




--[[Usuario:Tlacaelel Cruz|Tlacaelel Cruz]] ([[Usuario discusión:Tlacaelel Cruz|discusión]]) 21:41 30 jun 2015 (CDT)
'''Conclusion'''
 
Dado que $f(0)=2$ La función es analítica en $z=0$
----
Realizado por: [[Usuario:Tlacaelel Cruz|Tlacaelel Cruz]] ([[Usuario discusión:Tlacaelel Cruz|discusión]]) 21:41 30 jun 2015 (CDT)
----
----


===Ejercicio 3===
===Ejercicio 3===


Demuestra que $z=0$ es una singularidad removible de la función dada.
Demuestra que $z=0$ es una singularidad removible de la función dada.
Línea 62: Línea 62:
en $z=0$.
en $z=0$.


Ejercicio 3.-
 
 
'''Procedimiento'''


\[
\[
Línea 122: Línea 124:
\]
\]


'''Conclusión'''


\[
\[
Línea 133: Línea 138:




 
----
[[Usuario:Alejandro Juárez Toribio|Alejandro Juárez Toribio]] ([[Usuario discusión:Alejandro Juárez Toribio|discusión]]) 00:14 2 jul 2015 (CDT)
Realizado por:[[Usuario:Alejandro Juárez Toribio|Alejandro Juárez Toribio]] ([[Usuario discusión:Alejandro Juárez Toribio|discusión]]) 00:14 2 jul 2015 (CDT)
----
----


===Ejercicio 5===
===Ejercicio 5===


'''Determine los ceros y el orden para la función $f(z)=(z+2-i)^{2}$.'''
Determine los ceros y el orden para la función $f(z)=(z+2-i)^{2}$.
 
 
$Solución: $


'''Procedimiento'''


\[
\[
Línea 169: Línea 172:
\]
\]


'''Conclusión'''


\[
\[
Línea 175: Línea 181:




--[[Usuario:Emmanuell Castro Flores|Emmanuell Castro Flores]] ([[Usuario discusión:Emmanuell Castro Flores|discusión]]) 04:21 3 jul 2015 (CDT)
----
Realizado por: [[Usuario:Emmanuell Castro Flores|Emmanuell Castro Flores]] ([[Usuario discusión:Emmanuell Castro Flores|discusión]]) 04:21 3 jul 2015 (CDT)
----


===Ejercicio 6===
Determine los ceros y el orden de la función


----


===Ejercicio 6===
Determine los ceros y el orden de la funcion


'''Procedimiento'''
\[
\[
f(z)=z^{4}-16
f(z)=z^{4}-16
Línea 199: Línea 207:
\]
\]


'''Conclusión'''


Cuyas respectivas soluciones son
Cuyas respectivas soluciones son
Línea 207: Línea 216:




Derivando la funcion obtenemos
Derivando la función obtenemos


\[
\[
Línea 214: Línea 223:




Que como vemos no se anula en ninguno de los punto $z_{0}$ asi pues
Que como vemos no se anula en ninguno de los punto $z_{0}$ así pues
concluimos que todos los ceros son de orden 1.
concluimos que todos los ceros son de orden 1.


[[Usuario:Jose Emmanuel Flores Calderón|Jose Emmanuel Flores Calderón]] ([[Usuario discusión:Jose Emmanuel Flores Calderón|discusión]]) 21:16 2 jul 2015 (CDT)
----
 
Realizado por: [[Usuario:Jose Emmanuel Flores Calderón|Jose Emmanuel Flores Calderón]] ([[Usuario discusión:Jose Emmanuel Flores Calderón|discusión]]) 21:16 2 jul 2015 (CDT)
 
----
----


=== Ejercicio 7 ===
=== Ejercicio 7 ===


determine los ceros y el orden para la función dada  
Determine los ceros y el orden para la función dada  


$f(z)=z^{4}+z^{2}$
$f(z)=z^{4}+z^{2}$
'''Procedimiento'''


con $z=0$
con $z=0$
Línea 263: Línea 275:




--[[Usuario:Juan Daniel Rivera Bautista|Juan Daniel Rivera Bautista]] ([[Usuario discusión:Juan Daniel Rivera Bautista|discusión]]) 01:16 3 jul 2015 (CDT)
----
 
Realizado por: [[Usuario:Juan Daniel Rivera Bautista|Juan Daniel Rivera Bautista]] ([[Usuario discusión:Juan Daniel Rivera Bautista|discusión]]) 01:16 3 jul 2015 (CDT)
 
----
----


'''CONTRIBUCION'''
'''CONTRIBUCIÓN'''


Cuándo calculas  
Cuándo calculas  
Línea 279: Línea 290:




--[[Usuario:Samantha Martinez|Samantha Martinez]] ([[Usuario discusión:Samantha Martinez|discusión]]) 23:46 5 jul 2015 (CDT)
----
Contribución por: [[Usuario:Samantha Martinez|Samantha Martinez]] ([[Usuario discusión:Samantha Martinez|discusión]]) 23:46 5 jul 2015 (CDT)
 
----
 


'''Conclusión'''


----
Los ceros de la función son  $z=0$ de orden $n=2$
y $z=\pm i$ de orden $n=0$


===Ejercicio 8===
===Ejercicio 8===
Línea 291: Línea 308:
  </math>
  </math>


Solución
 
'''Procedimiento'''


Se tiene la serie del seno que es :
Se tiene la serie del seno que es :
Línea 319: Línea 337:
  </math> , lo cuál es distinto de cero , a lo que lleva <math>f(z)=(z-0)^{2}
  </math> , lo cuál es distinto de cero , a lo que lleva <math>f(z)=(z-0)^{2}
  </math>
  </math>
'''Conclusión'''


z=0 es un cero de orden 2 de f, entonces:
z=0 es un cero de orden 2 de f, entonces:
Línea 325: Línea 346:
  </math>
  </math>


Nota: $z=n\pi$ son ceros de orden 2
con $n=0,\pm1,\pm2,...$
----
Elaborado por Ricardo García Hernández--[[Usuario:Ricardo Garcia Hernandez|Ricardo Garcia Hernandez]] ([[Usuario discusión:Ricardo Garcia Hernandez|discusión]]) 23:58 3 jul 2015 (CDT)
Elaborado por Ricardo García Hernández--[[Usuario:Ricardo Garcia Hernandez|Ricardo Garcia Hernandez]] ([[Usuario discusión:Ricardo Garcia Hernandez|discusión]]) 23:58 3 jul 2015 (CDT)
----
----
Línea 330: Línea 354:
=== Ejercicio 9 ===
=== Ejercicio 9 ===


9.Determine los ceros y su orden, de la función dada: $f(z)=e^{2z}-e^{z}$.
Determine los ceros y su orden, de la función dada: $f(z)=e^{2z}-e^{z}$.


Solución:
 
 
'''Procedimiento'''


$f(z)=0 \Longrightarrow e^{2z}-e^{z}=0 $.  
$f(z)=0 \Longrightarrow e^{2z}-e^{z}=0 $.  
Línea 342: Línea 368:
Si $u_2=1 \Longrightarrow 1=e^{z_2} \Longleftrightarrow Ln 1=Ln e^{z_2} \Longleftrightarrow z_2=ln|1|+iArg1 \Longleftrightarrow z_2=0+i(0+2\pi k); (k\in\mathbb{Z}) \Longleftrightarrow z_2 =i2\pi k;(k\in\mathbb{Z})$.
Si $u_2=1 \Longrightarrow 1=e^{z_2} \Longleftrightarrow Ln 1=Ln e^{z_2} \Longleftrightarrow z_2=ln|1|+iArg1 \Longleftrightarrow z_2=0+i(0+2\pi k); (k\in\mathbb{Z}) \Longleftrightarrow z_2 =i2\pi k;(k\in\mathbb{Z})$.


Ahora $f'(z)=2e^{2z}-e^z \Longrightarrow f'(z_2)=2e^{2(i2\pi k)}-e^{i2\pi k}=2(\cos{4\pi k}+i\sin{4\pi k})-(\cos{2\pi k}+i\sin{2\pi k})=2(\cos{2\pi k}+i\sin{2\pi k})-(\cos{2\pi k}+i\sin{2\pi k})=\cos{2\pi k}+i\sin{2\pi k}  \neq 0; k\in\mathbb{Z}  $


Por lo tanto $(z_2=i2\pi k;k\in\mathbb{Z})$ es cero simple de $f(z)=e^{2z}-e^{z}$


[[Usuario:Alan Daniel Barrón Posadas|Alan Daniel Barrón Posadas]] ([[Usuario discusión:Alan Daniel Barrón Posadas|discusión]]) 20:20 3 jul 2015 (CDT)
'''Conclusión'''


----
Ahora


$f'(z)=2e^{2z}-e^z \Longrightarrow f'(z_2)=2e^{2(i2\pi k)}-e^{i2\pi k}=2(\cos{4\pi k}+i\sin{4\pi k})-(\cos{2\pi k}+i\sin{2\pi k})=$




=== Ejercicio 9 (version en inglés)===
$=2(\cos{2\pi k}+i\sin{2\pi k})-(\cos{2\pi k}+i\sin{2\pi k})=\cos{2\pi k}+i\sin{2\pi k}  \neq 0; k\in\mathbb{Z}  $


9.Determine los ceros y su orden, de la función dada: $f(z)=e^{2z}-e^{z}$.
Por lo tanto $(z_2=i2\pi k;k\in\mathbb{Z})$ es cero simple de $f(z)=e^{2z}-e^{z}$
 
Tomando que
 
$f(z_{0})=0$
 
$e^{2z}-e^{z}=0$
 
Por lo tanto  
 
$(cos(2z)-isen(2z))-(cos(z)-isen(z))=0$
 
Tomando para $z=\pi$
 
$(cos(2\pi)-isen(2\pi))-(cos(\pi)-isen(\pi))=0$
 
$ \therefore (1-1)-(1-1)=0 $
 
$ \therefore 0=0 $
 
Para $z=-\pi$
 
$ (cos(-2\pi))-isen(-2\pi)-(cos(-\pi)-isen(-\pi))=0 $
 
$ ((-1)-(-1))-((-1)-(-1))=0 $
 
$ \therefore 0=0 $
 
Por lo tanto se tiene un conjunto par para cualquier k.
 
$ \therefore z_{0}=2k\pi i $
 
Entonces
 
$ f'(z)=2e^{2z}-e^{z} $
Para $k=0$
 
$ f'(z_{0})=2e^{2k\pi i}-e^{2k\pi i}=2-1=1 $
Entonces no se anula en los puntos $z_{0}$ siendo de orden infinita.
 
 
[[Usuario:Samantha Martinez|Samantha Martinez]] ([[Usuario discusión:Samantha Martinez|discusión]]) 23:33 3 jul 2015 (CDT)


----
Realizado por:[[Usuario:Alan Daniel Barrón Posadas|Alan Daniel Barrón Posadas]] ([[Usuario discusión:Alan Daniel Barrón Posadas|discusión]]) 20:20 3 jul 2015 (CDT)
----
----


Línea 404: Línea 389:
Determine los ceros y el orden para la función dada.
Determine los ceros y el orden para la función dada.


10.- $f(z)=ze^{z}-z$
$f(z)=ze^{z}-z$


'''Procedimiento'''


Podemos reescribir como
Podemos reescribir como
Línea 420: Línea 406:
Entonces $\phi(0)=1$
Entonces $\phi(0)=1$


Finalmente observamos en la funcion $f(z)=z^{2}\phi(z)$ que $z=0$
es un cero de orden 2


'''Conclusión'''


Finalmente observamos en la función $f(z)=z^{2}\phi(z)$ que $z=0$
es un cero de orden 2


Nota:
Si escribimos la función $f(z)=z(e^z-1)$


--[[Usuario:Fernando Vazquez V.|Fernando Vazquez V.]] ([[Usuario discusión:Fernando Vazquez V.|discusión]]) 20:27 3 jul 2015 (CDT)
E igualamos a cero la parte entre paréntesis.


$e^z-1=0$


----
$e^z=1$


=== Ejercicio 13 ===
Esto se cumple cuando


Determine los ceros y el orden para la función dada.
$z=i2\pi n$


'''f(z)=1-e^{z-1}, z=1 '''
$n=0,\pm 1, \pm 2, \pm 3$ por lo que son ceros de orden 0 de la función $f(z)$


Tomando que
$ z-1=(a-1)+ib $
$ e^{z-1}=cos(z-1)+isen(z-1) $
$ f(z)= 1-(cos(z-1)+isen(z-1)) $
Teniendo un ceros en z=1, Tomando desarrollo de Maclaurin
$ f(z)=\frac{f(1)z}{0!}+\frac{f'(1)z^1}{1!}+\frac{f''(1)z^2}{2!}+\frac{f'''(1)z^3}{3!}+ ... + ...  $ 
Por lo tanto:
$ f(1)=1-(cos(1-1)+isen(1-1))=1-1=0 $
$ f'(1)=sen(z-1)+icos(z-1)=sen(1-1)+icos(1-1)=i $
$ f''(1)=cos(z-1)-isen(z-1)=1 $
$ f'''(1)=-sen(z-1)-icos(z-1)=-i $
$ \therefore f(z)=\frac{i}{1!}+\frac{z^2}{2!}+\frac{(-i)z^3}{3!}+... $
$ \therefore f(z)=1-(cos(z-1)+isen(z-1))=\frac{iz}{1!}+\frac{z^2}{2!}-\frac{iz^3}{3!} $
Por lo tanto tenemos un cero z=1 siendo de orden 1.
--[[Usuario:Samantha Martinez|Samantha Martinez]] ([[Usuario discusión:Samantha Martinez|discusión]]) 23:00 3 jul 2015 (CDT)
----
----
 
Realizado por: [[Usuario:Fernando Vazquez V.|Fernando Vazquez V.]] ([[Usuario discusión:Fernando Vazquez V.|discusión]]) 20:27 3 jul 2015 (CDT)
----
===Ejercicio 11===
===Ejercicio 11===


Línea 475: Línea 437:
$f(z)=z(1-cos^{2}z) \quad z=0$
$f(z)=z(1-cos^{2}z) \quad z=0$


'''Procedimiento'''


Solucion:
Solución:




De la identidad trigonometrica $\quad sin^{2} +cos^{2}z=1$
De la identidad trigonométrica $\quad sin^{2} +cos^{2}z=1$




Línea 488: Línea 451:




La función analitica de $f(z)=zsin^{2}z$ tiene un cero en $z=0$, obtenemos el desarrollo de Maclaurin
La función analítica de $f(z)=zsin^{2}z$ tiene un cero en $z=0$, obtenemos el desarrollo de Maclaurin




Línea 530: Línea 493:




Donde
'''Conclusión'''
 


$\phi (z)=1-\frac { { z }^{ 2 } }{ 3 } +\frac { 2 }{ 45 } { z }^{ 4 }-..............(3)$ $\quad$ donde $\phi (0)=1$
$\phi (z)=1-\frac { { z }^{ 2 } }{ 3 } +\frac { 2 }{ 45 } { z }^{ 4 }-..............(3)$ $\quad$ donde $\phi (0)=1$
Línea 538: Línea 500:
Comparando con $f(z)=(z-{ z }_{ 0 })\phi (z)$ el resultado en $(3)$ demuestra que $z=0$ en un cero de orden $5$ de $f$
Comparando con $f(z)=(z-{ z }_{ 0 })\phi (z)$ el resultado en $(3)$ demuestra que $z=0$ en un cero de orden $5$ de $f$


[[Usuario:Miguel Medina Armendariz|Miguel Medina Armendariz]] ([[Usuario discusión:Miguel Medina Armendariz|discusión]]) 00:37 2 jul 2015 (CDT)
----
----
 
Realizado por:[[Usuario:Miguel Medina Armendariz|Miguel Medina Armendariz]] ([[Usuario discusión:Miguel Medina Armendariz|discusión]]) 00:37 2 jul 2015 (CDT)
----
===Ejercicio 12===
===Ejercicio 12===


Usar serie de taylor o maclaurin para determinar el orden de la función
Usar serie de Taylor o Maclaurin para determinar el orden de la función
$f(z)=z-sen(z);z=0$
$f(z)=z-sen(z);z=0$
'''Procedimiento'''


Usando el desarrollo de Maclauirn obtenemos lo siguiente:  
Usando el desarrollo de Maclauirn obtenemos lo siguiente:  
Línea 575: Línea 539:


$\Longrightarrow f(z)\thickapprox\frac{z^{3}}{3\text{!}}-\frac{z^{5}}{5\text{!}}+\frac{z^{7}}{7!}-\frac{z^{9}}{9!}....$
$\Longrightarrow f(z)\thickapprox\frac{z^{3}}{3\text{!}}-\frac{z^{5}}{5\text{!}}+\frac{z^{7}}{7!}-\frac{z^{9}}{9!}....$
'''Conclusión'''


Entonces, factorizando $z^{3}$ de la serie anterior tenemos que:
Entonces, factorizando $z^{3}$ de la serie anterior tenemos que:
Línea 583: Línea 549:
de orden $n=3$
de orden $n=3$


----
Realizado por:[[Usuario:A. Martín R. Rabelo|A. Martín R. Rabelo]] ([[Usuario discusión:A. Martín R. Rabelo|discusión]]) 08:35 4 jul 2015 (CDT)
----
=== Ejercicio 13 ===
Determine los ceros y el orden para la función dada.
$f(z)=1-e^{z-1}, z=1$
'''Procedimiento'''
Tomando que
$z-1=(a-1)+ib$
$e^{z-1}=cos(z-1)+isen(z-1) $
$f(z)= 1-(cos(z-1)+isen(z-1)) $
Teniendo un ceros en z=1, Tomando desarrollo de Maclaurin
\[
f(z)=\frac{f(1)z}{0!}+\frac{f'(1)z^1}{1!}+\frac{f''(1)z^2}{2!}+\frac{f'''(1)z^3}{3!}+ ... + ...$ 
\]
Por lo tanto:
\[
f(1)=1-(cos(1-1)+isen(1-1))=1-1=0
\]


--[[Usuario:A. Martín R. Rabelo|A. Martín R. Rabelo]] ([[Usuario discusión:A. Martín R. Rabelo|discusión]]) 08:35 4 jul 2015 (CDT)
\[
f'(1)=sen(z-1)+icos(z-1)=sen(1-1)+icos(1-1)=i
\]
 
\[
f''(1)=cos(z-1)-isen(z-1)=1
\]
 
\[
f'''(1)=-sen(z-1)-icos(z-1)=-i
\]
 
'''Conclusión'''
 
$\therefore f(z)=\frac{i}{1!}+\frac{z^2}{2!}+\frac{(-i)z^3}{3!}+... $
 
$\therefore f(z)=1-(cos(z-1)+isen(z-1))=\frac{iz}{1!}+\frac{z^2}{2!}-\frac{iz^3}{3!} $
 
Por lo tanto tenemos un cero z=1 siendo de orden 1.


----
----
 
Realizado por: [[Usuario:Samantha Martinez|Samantha Martinez]] ([[Usuario discusión:Samantha Martinez|discusión]]) 23:00 3 jul 2015 (CDT)
----


===Ejercicio 15===
===Ejercicio 15===
Línea 594: Línea 609:
$f\left(z\right)=\frac{3z-1}{z^{2}+2z+5}$
$f\left(z\right)=\frac{3z-1}{z^{2}+2z+5}$


Solución:
'''Procedimiento'''


Primero queremos que el dominador sea cero para localizar el o los
Primero queremos que el dominador sea cero para localizar el o los
Línea 612: Línea 627:


$z=\frac{-2\pm\sqrt{2^{2}-4\left(1\right)\left(5\right)}}{2\left(1\right)}=\frac{-2\pm\sqrt{-16}}{2}=\frac{-2\pm4i}{2}=-1\pm2i$
$z=\frac{-2\pm\sqrt{2^{2}-4\left(1\right)\left(5\right)}}{2\left(1\right)}=\frac{-2\pm\sqrt{-16}}{2}=\frac{-2\pm4i}{2}=-1\pm2i$
'''Conclusión'''


Entonces como sacamos las raíces de z tenemos que:
Entonces como sacamos las raíces de z tenemos que:
Línea 622: Línea 639:




----
Resuelto por [[Usuario:Luis Enrique Martínez Valverde|Luis Enrique Martínez Valverde]] ([[Usuario discusión:Luis Enrique Martínez Valverde|discusión]]) 18:11 2 jul 2015 (CDT)  
Resuelto por [[Usuario:Luis Enrique Martínez Valverde|Luis Enrique Martínez Valverde]] ([[Usuario discusión:Luis Enrique Martínez Valverde|discusión]]) 18:11 2 jul 2015 (CDT)  


----
----
===Ejercicio 16===
===Ejercicio 16===
Determine el orden de los polos de la función dada:
Determine el orden de los polos de la función dada:


<math>f(z)=5- \frac{6}{z²}</math> de aqui podemos reescribir como <math>f(z)=\frac{5z²-6}{z²}</math>
$f(z)=5- \frac{6}{z²}$ de aquí podemos reescribir como $f(z)=\frac{5z²-6}{z²}$
 
'''Procedimiento'''


Consideramos que si las funciones <math>g</math> y <math>h</math> son analiticas en <math>z=z_0</math> y <math>h</math> tiene un cero de orden <math>n</math> en <math>z=z_0</math>y <math>g(z_0)</math> distinta de cero, entonces la funcion <math>f(z)=\frac{g(z)}{h(z)}</math>, tiene un polo de orden <math>n</math> en <math>z=z_0</math>.
Consideramos que si las funciones <math>g</math> y <math>h</math> son analiticas en <math>z=z_0</math> y <math>h</math> tiene un cero de orden <math>n</math> en <math>z=z_0</math>y <math>g(z_0)</math> distinta de cero, entonces la funcion <math>f(z)=\frac{g(z)}{h(z)}</math>, tiene un polo de orden <math>n</math> en <math>z=z_0</math>.
Línea 634: Línea 655:
Para nuestro caso definimos  
Para nuestro caso definimos  


<math>g(z)= 5z²-6</math>
$g(z)= 5z²-6$


<math>h(z)=z²</math>
$h(z)=z²$


como podemos observar para <math>z_0=0</math> nuestra <math>g(z_0)</math> es distinta de cero y <math>h(z_0)</math> es igual a cero por lo cual  
como podemos observar para $z_0=0$ nuestra $g(z_0)$ es distinta de cero y $h(z_0)$ es igual a cero por lo cual  
<math>z_0=0</math> es un polo de nuestra funcion.
$z_0=0$ es un polo de nuestra función.


Ahora bien reescribimos:
Ahora bien reescribimos:


<math>f(z)=\frac{5z²-6}{(0-z)²}</math>
$f(z)=\frac{5z²-6}{(0-z)²}$
 
'''Conclusión'''


por lo cual de lo anterior notamos que nuestro polo es de orden 2
por lo cual de lo anterior notamos que nuestro polo $z=0$ es de orden 2


----
----


===Ejercicio 17===
===Ejercicio 17===
In Problems 15\textendash 26, determine the order of the poles for
the given function.
traduccion:


En los problemas 15 a 26 , determinar el orden de los polos de la
En los problemas 15 a 26 , determinar el orden de los polos de la
función dada  
función dada:


$f\left(z\right)=\frac{1+4i}{\left(z+2\right)\left(z+i\right)^{4}}$
$f\left(z\right)=\frac{1+4i}{\left(z+2\right)\left(z+i\right)^{4}}$


los polos en una funcion compleja son los ceros que se generan en
los polos en una función compleja son los ceros que se generan en
el denominador cuando z es igual a un z especifico, y se dice que
el denominador cuando z es igual a un z especifico, y se dice que
en ese z especifico se encuentra un polo. por lo cual podemos decir
en ese z especifico se encuentra un polo. por lo cual podemos decir
lo siguioente
lo siguiente:
 
'''Inciso a'''


a) los factores del denominador son
a) los factores del denominador son
Línea 670: Línea 690:
$z+2$ y tambien $\left(z+i\right)^{4}$
$z+2$ y tambien $\left(z+i\right)^{4}$


b)al ser facotres cada uno de ellos produce un cero en un detterminado
'''Inciso b'''
b)al ser factores cada uno de ellos produce un cero en un determinado
valor de z
valor de z


Línea 677: Línea 698:
$z+2=0$ si y solo si $z=-2$
$z+2=0$ si y solo si $z=-2$


$\left(z+i\right)^{4}=0$ si y solo si $z=-i$ pero este facotr tiene
$\left(z+i\right)^{4}=0$ si y solo si $z=-i$ pero este factor tiene
una potencia de 4 por lo que su miltiplicidad es de grado 4
una potencia de 4 por lo que su multiplicidad es de grado 4


entonces podemos concluir lo siguiente:
entonces podemos concluir lo siguiente:


la fuincion dada tiene 2 polos
'''Conclusión'''
 
la función dada tiene 2 polos


a) un polo simple en $z=-2$
a) un polo simple en $z=-2$
Línea 689: Línea 712:




--[[Usuario:Martin Flores Molina|Martin Flores Molina]] ([[Usuario discusión:Martin Flores Molina|discusión]]) 13:05 15 mayo 2015 (CDT) ----
----
Relizado por[[Usuario:Martin Flores Molina|Martin Flores Molina]] ([[Usuario discusión:Martin Flores Molina|discusión]]) 13:05 15 mayo 2015 (CDT)  
----


----
===Ejercicio 18===
===Ejercicio 18===


Línea 732: Línea 756:
$f(z) = tan z$
$f(z) = tan z$


'''Procedimiento'''


Los polos de una función indican donde se hace cero, es decir encontramos sus ``raices''
Los polos de una función indican donde se hace cero, es decir encontramos sus raíces


Si:
Si:
Línea 739: Línea 764:
$f(z) = tan z = \frac{sen z}{cos z}$
$f(z) = tan z = \frac{sen z}{cos z}$


Entonces $cos z = 0$, en cada multiplo de $\frac{\pi}{2}$ vale cero; ejemplo:  $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$.
Entonces $cos z = 0$, en cada múltiplo de $\frac{\pi}{2}$ vale cero; ejemplo:  $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$.
 
'''Conclusión'''


Por lo tanto tiene polos simples en los puntos:
Por lo tanto tiene polos simples en los puntos:


$ (2n+1) \frac{\pi}{2} $       
$(2n+1) \frac{\pi}{2}$       


$n=0,\pm1,\pm2,...$
$n=0,\pm1,\pm2,...$


[[Usuario:Nancy Martínez Durán|Nancy Martínez Durán]] ([[Usuario discusión:Nancy Martínez Durán|discusión]]) 01:23 4 jul 2015 (CDT)
----
----
 
Realizado por: [[Usuario:Nancy Martínez Durán|Nancy Martínez Durán]] ([[Usuario discusión:Nancy Martínez Durán|discusión]]) 01:23 4 jul 2015 (CDT)
----


===Ejercicio 22===
===Ejercicio 22===
Determine el polo de $f(z)={\displaystyle \frac{e^{z}}{z^{2}}}$
Determine el polo de $f(z)={\displaystyle \frac{e^{z}}{z^{2}}}$
'''Procedimiento'''


Definimos como $g(z)=e^{z}$ y a $h(z)=z^{2}$, tal que $f(z)={\displaystyle \frac{g(z)}{h(z)}}$,
Definimos como $g(z)=e^{z}$ y a $h(z)=z^{2}$, tal que $f(z)={\displaystyle \frac{g(z)}{h(z)}}$,
buscamos ceros de la funcion $h(z)$ tal que no sean ceros de $g(z)$,
buscamos ceros de la función $h(z)$ tal que no sean ceros de $g(z)$,
el unico punto $z_{0}$ donde $h(z)$ es cero es en $z_{o}=0$.
el único punto $z_{0}$ donde $h(z)$ es cero es en $z_{o}=0$.


Derivando la funcion $h(z)$
Derivando la función $h(z)$


$h^{\prime}(z)=2z$ evaludada en $z_{0}$ tenemos $h^{\prime}(z_{0})=0$
$h^{\prime}(z)=2z$ evaluada en $z_{0}$ tenemos $h^{\prime}(z_{0})=0$


$h^{\prime\prime}(z)=2$ evaluada en $z_{0}$ tenemos $h^{\prime\prime}(z_{0})=2$
$h^{\prime\prime}(z)=2$ evaluada en $z_{0}$ tenemos $h^{\prime\prime}(z_{0})=2$


Por lo tanto la funcion $f(z)={\displaystyle \frac{e^{z}}{z^{2}}}$
'''Conclusión'''
 
Por lo tanto la función $f(z)={\displaystyle \frac{e^{z}}{z^{2}}}$
tiene un polo de orden 2 en $z_{0}=0$.
tiene un polo de orden 2 en $z_{0}=0$.


[[Usuario:Jose Emmanuel Flores Calderón|Jose Emmanuel Flores Calderón]] ([[Usuario discusión:Jose Emmanuel Flores Calderón|discusión]]) 21:31 2 jul 2015 (CDT)
----
----
Elaborado por:[[Usuario:Jose Emmanuel Flores Calderón|Jose Emmanuel Flores Calderón]] ([[Usuario discusión:Jose Emmanuel Flores Calderón|discusión]]) 21:31 2 jul 2015 (CDT)
----
===Ejercicio 23===
===Ejercicio 23===


Línea 782: Línea 814:


determine el orden de los polos de la función dada
determine el orden de los polos de la función dada
'''Procedimiento'''


$f(z)=\frac{1}{1+e^{z}}$
$f(z)=\frac{1}{1+e^{z}}$
Línea 800: Línea 834:


$e^{z}=\cos b+i\sin b=\cos(2n+1)\pi+i\sin(2n+1)\pi=e^{i(2n+1)\pi}con\;n=0,\pm1,\pm2,\pm3,...$
$e^{z}=\cos b+i\sin b=\cos(2n+1)\pi+i\sin(2n+1)\pi=e^{i(2n+1)\pi}con\;n=0,\pm1,\pm2,\pm3,...$
'''Conclusión'''


de lo anterior podemos concluir que el denominador tiene ceros de
de lo anterior podemos concluir que el denominador tiene ceros de
Línea 808: Línea 844:
en $z=i(2n+1)\pi,con\;n=0,\pm1,\pm2,\pm3,...$
en $z=i(2n+1)\pi,con\;n=0,\pm1,\pm2,\pm3,...$


--[[Usuario:Francisco Medina Albino|Francisco Medina Albino]] ([[Usuario discusión:Francisco Medina Albino|discusión]]) 00:06 3 jul 2015 (CDT)
----
----
Realizado por: [[Usuario:Francisco Medina Albino|Francisco Medina Albino]] ([[Usuario discusión:Francisco Medina Albino|discusión]]) 00:06 3 jul 2015 (CDT)
----
===Ejercicio 25===
===Ejercicio 25===


Línea 815: Línea 853:


Como tiene dos puntos singulares que es en <math>z=0</math> y en <math>z=1</math>
Como tiene dos puntos singulares que es en <math>z=0</math> y en <math>z=1</math>
'''Inciso a'''


a) Analizando para <math>z_0=0</math>
a) Analizando para <math>z_0=0</math>
Línea 845: Línea 885:




'''Inciso b'''


'''b)''' Para <math>z_0=1</math>
'''b)''' Para <math>z_0=1</math>
Línea 870: Línea 911:




--[[Usuario:Pablo|Pablo]] ([[Usuario discusión:Pablo|discusión]]) 20:31 3 jul 2015 (CDT)
----
Realizado por:[[Usuario:Pablo|Pablo]] ([[Usuario discusión:Pablo|discusión]]) 20:31 3 jul 2015 (CDT)


----
----
Línea 877: Línea 919:
'''En el inciso (b) del ejemplo 2 de la sección 6.3, hemos demostrado que la representación en serie de Laurent de $f(z) = \dfrac{1}{z(z-1)}$.  Valida para $|z|<1$    es:'''
'''En el inciso (b) del ejemplo 2 de la sección 6.3, hemos demostrado que la representación en serie de Laurent de $f(z) = \dfrac{1}{z(z-1)}$.  Valida para $|z|<1$    es:'''


'''Procedimiento'''
\[
\[
f(z)= \dfrac{1}{z^{2}}+\dfrac{1}{z^{3}}+\dfrac{1}{z^{4}}+\dfrac{1}{z^{5}}+...\]
f(z)= \dfrac{1}{z^{2}}+\dfrac{1}{z^{3}}+\dfrac{1}{z^{4}}+\dfrac{1}{z^{5}}+...\]
Línea 907: Línea 950:


Demostrar que  $z=0$      es un polo simple  
Demostrar que  $z=0$      es un polo simple  
'''Conclusión'''


\[
\[
Línea 915: Línea 960:




--[[Usuario:Esther Sarai|Esther Sarai]] ([[Usuario discusión:Esther Sarai|discusión]]) 22:57 1 jul 2015 (CDT)Esther Sarai
----
Realizado por:[[Usuario:Esther Sarai|Esther Sarai]] ([[Usuario discusión:Esther Sarai|discusión]]) 22:57 1 jul 2015 (CDT)Esther Sarai
----


===Ejercicio 32===
===Ejercicio 32===
Línea 922: Línea 969:




'''Sol.''' Por el problema y del Teorema para el cero de orden $n$, tenemos que las funciones $f$ y $g$ se pueden escribir como
'''Sol.'''
 
Por el problema y del Teorema para el cero de orden $n$, tenemos que las funciones $f$ y $g$ se pueden escribir como




Línea 931: Línea 980:




donde $\phi$ y $\beta$ son analíticas en $z=z_0$ y son diferentes de cero al evaluarlas en $z=z_0$. Multiplicandolas
donde $\phi$ y $\beta$ son analíticas en $z=z_0$ y son diferentes de cero al evaluarlas en $z=z_0$. Multiplicándolas




Línea 966: Línea 1015:
$Q(z)^{(m)}=f^{(m)}+g^{(m)}=g^{(m)}=f^{(m)}$
$Q(z)^{(m)}=f^{(m)}+g^{(m)}=g^{(m)}=f^{(m)}$


'''Conclusión'''


y $Q$ se puede escribir como $Q(z)=(z-z_0)^m\phi(z)$ donde igualmente $\phi (z)$ es analítica y diferente de cero en $z_0$.
y $Q$ se puede escribir como $Q(z)=(z-z_0)^m\phi(z)$ donde igualmente $\phi (z)$ es analítica y diferente de cero en $z_0$.


----


[[Usuario:Oscar Javier Gutierrez Varela|Oscar Javier Gutierrez Varela]] ([[Usuario discusión:Oscar Javier Gutierrez Varela|discusión]]) 18:52 30 jun 2015 (CDT)
Realizado por:[[Usuario:Oscar Javier Gutierrez Varela|Oscar Javier Gutierrez Varela]] ([[Usuario discusión:Oscar Javier Gutierrez Varela|discusión]]) 18:52 30 jun 2015 (CDT)
----
----
'''Comentario'''
¿Qué pasa en $f(z)$ definida como: $f(z) = f(z)/g(z)$, donde $f(z)$ y $g(z)$ son
¿Qué pasa en $f(z)$ definida como: $f(z) = f(z)/g(z)$, donde $f(z)$ y $g(z)$ son
   
   
Línea 981: Línea 1035:
\[
\[
g^{m}= (z_{0}) \neq 0.\]
g^{m}= (z_{0}) \neq 0.\]
--[[Usuario:Esther Sarai|Esther Sarai]] ([[Usuario discusión:Esther Sarai|discusión]]) 14:23 2 jul 2015 (CDT)Esther Sarai
 
----
Comentario por:[[Usuario:Esther Sarai|Esther Sarai]] ([[Usuario discusión:Esther Sarai|discusión]]) 14:23 2 jul 2015 (CDT)Esther Sarai
----

Revisión actual - 01:04 6 mar 2023


Ejercicios del capítulo 6, sección 4 del libro, A First Course in Complex Analysis with Applications de Zill y Shanahan.


Sección 6.4

Ejercicio 1

Demuestre que $z=0$ es una singularidad removible de la función dada $\left(f(z)=\frac{e^{2z}-1}{z}\right)$. Dé una definición de $f(0)$, de modo que $f$ es analítica en $z=0$.

Procedimiento  

Como si la singularidad existe esta en 0, podemos usar la serie de Maclaurin para la exponencial:

\[ e^{z}=1+\frac{z}{1!}+\frac{z^2}{2!}+\ldots=\sum_{k=0}^{\infty} {\frac{z^k}{k!}} \]

Por lo tanto: \[ e^{2z}-1=\frac{2z}{1!}+\frac{(2z)^2}{2!}+\ldots=\sum_{k=1}^{\infty} {\frac{(2z)^k}{k!}} \] Y: \[ f(z)=\frac{e^{2z}-1}{z}=\frac{\frac{2z}{1!}+\frac{(2z)^2}{2!}+\ldots}{z}=\frac{\sum_{k=1}^{\infty} {\frac{(2z)^k}{k!}}}{z} \] \[ f(z)=2\sum_{k=1}^{\infty} {\frac{(2z)^{k-1}}{k!}}=2\left[ \frac{1}{1!}+\frac{2z}{2!}+\frac{(2z)^2}{3!}+\frac{(2z)^3}{4!}+\ldots \right] \]

Donde se observa que no hay parte principal, y es completamente analítica, por lo que o no tiene singularidades o son removibles. Evaluando la función: \[ f(0)=\frac{e^{2\cdot0}-1}{0}=\frac{1-1}{0}=\frac{0}{0} \] Lo cual evidentemente la in determina, para averiguar cual es el valor de $f$ en $0$ que permite remover la sigularidad, podemos aplicar l'Hopital o evaluar la serie. Evaluando la serie: \[ f(0)=2\left[ \frac{1}{1!}+\frac{2\cdot 0}{2!}+\frac{(2\cdot 0)^2}{3!}+\frac{(2\cdot 0)^3}{4!}+\ldots \right]=2 \] O aplicando l'Hopital: \[ f(0)=\lim_{z\to 0} {f(z)}=\lim_{z\to 0} {\frac{e^{2z}-1}{z}}=\lim_{z\to 0} {\frac{\frac{d}{dz}\left(e^{2z}-1\right)}{\frac{d}{dz}(z)}} \] \[ f(0)=\lim_{z\to 0} {\frac{2\,e^{2z}}{1}}=\frac{2\,e^{2\cdot 0}}{1}=2\cdot 1=2 \] \[ \therefore f(0)=2 \]


Conclusion

Dado que $f(0)=2$ La función es analítica en $z=0$


Realizado por: Tlacaelel Cruz (discusión) 21:41 30 jun 2015 (CDT)


Ejercicio 3

Demuestra que $z=0$ es una singularidad removible de la función dada. Dé una función de $f\left(0\right)$, de modo que $f$ es analítica en $z=0$.


Procedimiento

\[ f\left(z\right)=\frac{\sin\left(4z\right)-4z}{z^{2}}...\left(1\right) \]


Por conveniencia se reescribirá la ecuación $\left(1\right)$como: \[ f\left(z\right)=\frac{\sin\left(4z\right)}{z^{2}}-\frac{4z}{z^{2}}=\frac{\sin\left(4z\right)}{z^{2}}-\frac{4}{z}...\left(2\right) \]


Como $z=0$ es una singularidad aislada , la ecuacion $\left(1\right)$se puede reescribir utilizando la serie de Maclaurin para $\sin\left(z\right)$que es:

\[ \sin\left(z\right)=\sum_{k=0}^{\infty}\left(-1\right)^{k}\frac{z^{2k+1}}{\left(2k+1\right)!} \]


Por lo tanto para:

\[ \sin\left(4z\right)=4z-\frac{\left(4z\right)^{3}}{3!}+\frac{\left(4z\right)^{5}}{5!}-... \]


Entonces : \[ \frac{\sin\left(4z\right)}{z^{2}}=\frac{4z}{z^{2}}-\frac{\left(4z\right)^{3}}{z^{2}3!}+\frac{\left(4z\right)^{5}}{z^{2}5!}-=\frac{4}{z}-\frac{\left(4\right)^{3}z}{3!}+\frac{\left(4\right)^{5}z^{3}}{5!}-...\left(3\right) \]


Por lo que sustituyendo este valor en la ecuación $\left(2\right)$se obtiene:

\[ f\left(z\right)=\frac{\sin\left(4z\right)}{z^{2}}-\frac{4}{z}=\frac{4}{z}-\frac{\left(4\right)^{3}z}{3!}+\frac{\left(4\right)^{5}z^{3}}{5!}-...-\frac{4}{z} \]


Como el primer término de la serie se elimina con el último de la misma, se obtiene:

\[ f\left(z\right)=-\frac{\left(4\right)^{3}z}{3!}+\frac{\left(4\right)^{5}z^{3}}{5!}-\frac{\left(4\right)^{7}z^{5}}{7!}+... \]


Esta serie es totalmente analítica , por lo que la singularidad observada desde el inicio, $z=0$ es removible. Al calcular la serie en

$f\left(0\right)$se puede apreciar que:

\[ f\left(0\right)=-\frac{\left(4\right)^{3}\left(0\right)}{3!}+\frac{\left(4\right)^{5}\left(0\right)^{3}}{5!}-\frac{\left(4\right)^{7}\left(0\right)^{5}}{7!}+...=0 \]


Conclusión

\[ f\left(0\right)=0 \]


Por lo tanto, así se demuestra que $f$ también es analítica en $z=0$




Realizado por:Alejandro Juárez Toribio (discusión) 00:14 2 jul 2015 (CDT)


Ejercicio 5

Determine los ceros y el orden para la función $f(z)=(z+2-i)^{2}$.

Procedimiento

\[ f(z_{0})=0 \]

\[ \Rightarrow z+2-i=0 \]

\[ \Rightarrow z=-2+i \]

\[ f(z)=(z+2-i)^{2} , z_{0}=-2+i \]

\[ f(z)= \left[ (z-2+i) +(2-i) \right]^{2} , \phi(z)=2-i \]

\[ \phi(z_{0}=-2+i) \neq 0 \]


Conclusión

\[ \therefore z_{0}=-2+i \;es \, un \, cero \, de \, orden \, 2 \]



Realizado por: Emmanuell Castro Flores (discusión) 04:21 3 jul 2015 (CDT)


Ejercicio 6

Determine los ceros y el orden de la función


Procedimiento

\[ f(z)=z^{4}-16 \]


\[ f(z_{0})=0\Rightarrow z^{4}-16=0\Rightarrow z^{4}=16 \]


Tenemos dos casos

\[ z^{2}=4\hspace{1em}y\hspace{1em}z^{2}=-4 \]

Conclusión

Cuyas respectivas soluciones son

\[ z_{0}=\{\pm2,\pm2i\} \]


Derivando la función obtenemos

\[ f^{\prime}(z)=4z^{3} \]


Que como vemos no se anula en ninguno de los punto $z_{0}$ así pues concluimos que todos los ceros son de orden 1.


Realizado por: Jose Emmanuel Flores Calderón (discusión) 21:16 2 jul 2015 (CDT)


Ejercicio 7

Determine los ceros y el orden para la función dada

$f(z)=z^{4}+z^{2}$


Procedimiento

con $z=0$

$f(0)=0+0=0$

$f´(z)=4z^{3}+2z$

$f´(0)=0+0=0$

$f´´(z)=12z^{2}+2$

$f´´(z)=0+2\neq0$

entonces 0 es mi cero de ésta función y es de orden 2

una forma diferente de resolverlo es

$f(z)=z^{4}+z^{2}=z^{2}(z^{2}+1)$

donde $\phi(z)=(z^{2}+1)$ y $\phi(0)=1$

entonces tenemos

$f(z)=z^{2}\phi(z)$

donde la potencia de $z$ me da el orden de mi cero de ésta función

y ya sabemos que

$f(0)=0\phi(z)=0$

llegamos a la misma conclusión, 0 es mi cero de la función y es de orden 2



Realizado por: Juan Daniel Rivera Bautista (discusión) 01:16 3 jul 2015 (CDT)


CONTRIBUCIÓN

Cuándo calculas $f(z)=z^2(z^2+1)=0 $

Tienes razón que la potencia $z^2$ dice que el orden es 2, pero si tomas $ (z^2+1)=0 \Rightarrow z^2=-1 $

$ \therefore z=i$ & $z=-i$ siendo ceros simples de la función.



Contribución por: Samantha Martinez (discusión) 23:46 5 jul 2015 (CDT)



Conclusión

Los ceros de la función son $z=0$ de orden $n=2$ y $z=\pm i$ de orden $n=0$

Ejercicio 8

Determine los ceros y el orden para función dada.


Procedimiento

Se tiene la serie del seno que es :

entonces

donde factorizando a “z” como término común del producto de dichas series y multiplicando dichos terminos se tiene:

donde:

donde sí , lo cuál es distinto de cero , a lo que lleva


Conclusión

z=0 es un cero de orden 2 de f, entonces:

Nota: $z=n\pi$ son ceros de orden 2 con $n=0,\pm1,\pm2,...$


Elaborado por Ricardo García Hernández--Ricardo Garcia Hernandez (discusión) 23:58 3 jul 2015 (CDT)


Ejercicio 9

Determine los ceros y su orden, de la función dada: $f(z)=e^{2z}-e^{z}$.


Procedimiento

$f(z)=0 \Longrightarrow e^{2z}-e^{z}=0 $.

Si $u=e^z \Longrightarrow u^2-u=0 \Longleftrightarrow u(u-1)=0 \Longrightarrow (u_1=0 \vee u_2=1) $.

Si $u_1=0 \Longrightarrow 0=e^{z_1} \Longleftrightarrow Ln 0 = Ln e^{z_1} \Longleftrightarrow z_1=Ln 0 \Longleftrightarrow z_1=ln|0|+i(Arg0) $, pero $ln0 $ no esta definido, por lo tanto no hay solución para este valor.

Si $u_2=1 \Longrightarrow 1=e^{z_2} \Longleftrightarrow Ln 1=Ln e^{z_2} \Longleftrightarrow z_2=ln|1|+iArg1 \Longleftrightarrow z_2=0+i(0+2\pi k); (k\in\mathbb{Z}) \Longleftrightarrow z_2 =i2\pi k;(k\in\mathbb{Z})$.


Conclusión

Ahora

$f'(z)=2e^{2z}-e^z \Longrightarrow f'(z_2)=2e^{2(i2\pi k)}-e^{i2\pi k}=2(\cos{4\pi k}+i\sin{4\pi k})-(\cos{2\pi k}+i\sin{2\pi k})=$


$=2(\cos{2\pi k}+i\sin{2\pi k})-(\cos{2\pi k}+i\sin{2\pi k})=\cos{2\pi k}+i\sin{2\pi k} \neq 0; k\in\mathbb{Z} $

Por lo tanto $(z_2=i2\pi k;k\in\mathbb{Z})$ es cero simple de $f(z)=e^{2z}-e^{z}$


Realizado por:Alan Daniel Barrón Posadas (discusión) 20:20 3 jul 2015 (CDT)


Ejercicio 10

Determine los ceros y el orden para la función dada.

$f(z)=ze^{z}-z$

Procedimiento

Podemos reescribir como

$f(z)=ze^{z}-z=(e^{z}-1)z=[(1+z+\frac{z^{2}}{2!}+\cdots)-1]z=z[z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots]=z^{2}[1+\frac{z}{2!}+\frac{z^{2}}{3!}+\cdots]$


Claramente

$1+\frac{z}{2!}+\frac{z^{2}}{3!}+\cdots=\phi(z)$


Entonces $\phi(0)=1$


Conclusión

Finalmente observamos en la función $f(z)=z^{2}\phi(z)$ que $z=0$ es un cero de orden 2

Nota: Si escribimos la función $f(z)=z(e^z-1)$

E igualamos a cero la parte entre paréntesis.

$e^z-1=0$

$e^z=1$

Esto se cumple cuando

$z=i2\pi n$

$n=0,\pm 1, \pm 2, \pm 3$ por lo que son ceros de orden 0 de la función $f(z)$


Realizado por: Fernando Vazquez V. (discusión) 20:27 3 jul 2015 (CDT)


Ejercicio 11

Use una serie de Taylor o Maclaurin para determinar el orden del cero


$f(z)=z(1-cos^{2}z) \quad z=0$

Procedimiento

Solución:


De la identidad trigonométrica $\quad sin^{2} +cos^{2}z=1$


Podemos reescribir $f(z)$ como sigue


$f(z)=zsin^{2}z$ .............$(1)$


La función analítica de $f(z)=zsin^{2}z$ tiene un cero en $z=0$, obtenemos el desarrollo de Maclaurin


$f(z)\quad \approx \quad \frac { { f(0) }{ z }^{ 0 } }{ 0! } +\frac { f´(0){ z }^{ 1 } }{ 1! } +\frac { f"(0){ z }^{ 2 } }{ 2! } +\frac { { f }^{ 3 }(0){ z }^{ 3 } }{ 3! } +\frac { { f }^{ 4 }(0){ z }^{ 4 } }{ 4! } +\frac { { f }^{ 5 }(0){ z }^{ 5 } }{ 5! } +\frac { { f }^{ 6 }(0){ z }^{ 6 } }{ 6! } +...............$


Donde


$f(0)=0$


$f´(0)=2cos(z)sin(z)=0$


$f"(0)=2cos^{2}z-2sin^{2}z=2$


${ f }^{ 3 }(0)=-8cos(z)sin(z)=0$


$ { f }^{ 4 }(0)=-8cos^{2}z+8sin^{2}z=-8$


$ { f }^{ 5 }(0)=32cos(z)sin(z)=0$


${ f }^{ 6 }(0)=32cos^{2}z-32sin^{2}z=32$


Por lo tanto $f(z)$ seria


$\sin ^{ 2 }{ (z) } \quad \approx \quad { z }^{ 2 }-\frac { { z }^{ 4 } }{ 3 } +\frac { 2 }{ 45 } { z }^{ 6 }-..............$


Entonces factorizando $z^{2}$ de la serie anterior podemos escribir $f$ como


$f(z)=z\sin ^{ 2 }{ z } ={ z }^{ 3 }\phi (z)......................(2)$


Conclusión

$\phi (z)=1-\frac { { z }^{ 2 } }{ 3 } +\frac { 2 }{ 45 } { z }^{ 4 }-..............(3)$ $\quad$ donde $\phi (0)=1$


Comparando con $f(z)=(z-{ z }_{ 0 })\phi (z)$ el resultado en $(3)$ demuestra que $z=0$ en un cero de orden $5$ de $f$


Realizado por:Miguel Medina Armendariz (discusión) 00:37 2 jul 2015 (CDT)


Ejercicio 12

Usar serie de Taylor o Maclaurin para determinar el orden de la función $f(z)=z-sen(z);z=0$

Procedimiento

Usando el desarrollo de Maclauirn obtenemos lo siguiente:

Primero sacamos derivadas de la función y las evaluamos en $f(0)$

$f(0)=z-sen(z)=0$

$f^{1}(0)=1-cos(z)=0$

$f^{2}(0)=sen(z)=0$

$f^{3}(0)=cos(z)=1$

$f^{4}(0)=-sen(z)=0$

$f^{5}(0)=-cos(z)=-1$

$f^{6}(0)=sen(z)=0$

$f^{7}(0)=cos(z)=1$

$f^{8}(0)=-sen(z)=0$

$f^{9}(0)=-cos(z)=-1$

Entonces usando Macalurin tenemos que:

$f(z)\thickapprox\frac{f^{0}(0)}{0!}z^{0}+\frac{f^{1}(0)}{1!}z^{1}+\frac{f^{2}(0)}{2!}z^{2}+\frac{f^{3}(0)}{3!}z^{3}+\frac{f^{4}(0)}{4!}z^{4}+\frac{f^{5}(0)}{5!}z^{5}......$

$\Longrightarrow f(z)\thickapprox\frac{z^{3}}{3\text{!}}-\frac{z^{5}}{5\text{!}}+\frac{z^{7}}{7!}-\frac{z^{9}}{9!}....$

Conclusión

Entonces, factorizando $z^{3}$ de la serie anterior tenemos que:

$f(z)=z-sen(z)=z^{3}\phi(z)\Longrightarrow\phi(z)=\frac{1}{3\text{!}}-\frac{z^{2}}{5\text{!}}+\frac{z^{4}}{7!}-\frac{z^{6}}{9!}....$

Por lo que podemos decir que nuestra función analítica tiene un cero de orden $n=3$


Realizado por:A. Martín R. Rabelo (discusión) 08:35 4 jul 2015 (CDT)



Ejercicio 13

Determine los ceros y el orden para la función dada.

$f(z)=1-e^{z-1}, z=1$

Procedimiento

Tomando que

$z-1=(a-1)+ib$

$e^{z-1}=cos(z-1)+isen(z-1) $

$f(z)= 1-(cos(z-1)+isen(z-1)) $

Teniendo un ceros en z=1, Tomando desarrollo de Maclaurin \[ f(z)=\frac{f(1)z}{0!}+\frac{f'(1)z^1}{1!}+\frac{f''(1)z^2}{2!}+\frac{f'''(1)z^3}{3!}+ ... + ...$ \] Por lo tanto:

\[ f(1)=1-(cos(1-1)+isen(1-1))=1-1=0 \]

\[ f'(1)=sen(z-1)+icos(z-1)=sen(1-1)+icos(1-1)=i \]

\[ f''(1)=cos(z-1)-isen(z-1)=1 \]

\[ f'''(1)=-sen(z-1)-icos(z-1)=-i \]

Conclusión

$\therefore f(z)=\frac{i}{1!}+\frac{z^2}{2!}+\frac{(-i)z^3}{3!}+... $

$\therefore f(z)=1-(cos(z-1)+isen(z-1))=\frac{iz}{1!}+\frac{z^2}{2!}-\frac{iz^3}{3!} $

Por lo tanto tenemos un cero z=1 siendo de orden 1.


Realizado por: Samantha Martinez (discusión) 23:00 3 jul 2015 (CDT)


Ejercicio 15

Determinar el orden de los polos

$f\left(z\right)=\frac{3z-1}{z^{2}+2z+5}$

Procedimiento 

Primero queremos que el dominador sea cero para localizar el o los polos correspondientes

Resolvemos por la fórmula general

$z=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$ ...(1)

Entonces tomamos el denominador de f(z)

$z^{2}+2z+5=0$ ...(2)

Aplicamos (1) para resolver (2), donde

a=1 , b=2 y c=5

$z=\frac{-2\pm\sqrt{2^{2}-4\left(1\right)\left(5\right)}}{2\left(1\right)}=\frac{-2\pm\sqrt{-16}}{2}=\frac{-2\pm4i}{2}=-1\pm2i$

Conclusión

Entonces como sacamos las raíces de z tenemos que:

$z_{1}=-1+2i$ , $z_{2}=-1-2i$ o bien $z_{1}$ y $\bar{z_{1}}$son los polos de nuestra $f\left(z\right)$

Para finalizar decimos que $z_{1}$ y $z_{2}$ son polos simples de $f\left(z\right)$



Resuelto por Luis Enrique Martínez Valverde (discusión) 18:11 2 jul 2015 (CDT)


Ejercicio 16

Determine el orden de los polos de la función dada:

$f(z)=5- \frac{6}{z²}$ de aquí podemos reescribir como $f(z)=\frac{5z²-6}{z²}$

Procedimiento

Consideramos que si las funciones y son analiticas en y tiene un cero de orden en y distinta de cero, entonces la funcion , tiene un polo de orden en .

Para nuestro caso definimos

$g(z)= 5z²-6$

$h(z)=z²$

como podemos observar para $z_0=0$ nuestra $g(z_0)$ es distinta de cero y $h(z_0)$ es igual a cero por lo cual $z_0=0$ es un polo de nuestra función.

Ahora bien reescribimos:

$f(z)=\frac{5z²-6}{(0-z)²}$

Conclusión

por lo cual de lo anterior notamos que nuestro polo $z=0$ es de orden 2


Ejercicio 17

En los problemas 15 a 26 , determinar el orden de los polos de la función dada:

$f\left(z\right)=\frac{1+4i}{\left(z+2\right)\left(z+i\right)^{4}}$

los polos en una función compleja son los ceros que se generan en el denominador cuando z es igual a un z especifico, y se dice que en ese z especifico se encuentra un polo. por lo cual podemos decir lo siguiente:

Inciso a

a) los factores del denominador son

$z+2$ y tambien $\left(z+i\right)^{4}$

Inciso b

b)al ser factores cada uno de ellos produce un cero en un determinado valor de z

del siguiente modo:

$z+2=0$ si y solo si $z=-2$

$\left(z+i\right)^{4}=0$ si y solo si $z=-i$ pero este factor tiene una potencia de 4 por lo que su multiplicidad es de grado 4

entonces podemos concluir lo siguiente:

Conclusión

la función dada tiene 2 polos

a) un polo simple en $z=-2$

b) un polo de orden 4 en $z=-i$



Relizado porMartin Flores Molina (discusión) 13:05 15 mayo 2015 (CDT)


Ejercicio 18

Determine el orden de los polos de la función dada


$f(z) = \frac{z - 1}{(z + 1) (z^3 + 1)}$


Para conocer los polos de una función debemos conocer donde es que esa función de hace cero, en este caso nuestra función tiene dos cero


$z_0 = 1$


$z_0 = 1$


En esta ocasión los ceros son los mismos, por lo que podemos decir que la función tiene "un poco de orden simple", ya que el termino donde la función se hace cero es de la forma


$f(z) = \frac{\Phi (z)}{(z - z_0)^n}$


Donde $n = 1$ y este es el orden del polo


Angelina Nohemi Mendoza Tavera (discusión) 21:08 2 jul 2015 (CDT)



Ejercicio 19

Determine el orden de los polos de la función dada


$f(z) = tan z$

Procedimiento

Los polos de una función indican donde se hace cero, es decir encontramos sus raíces

Si:

$f(z) = tan z = \frac{sen z}{cos z}$

Entonces $cos z = 0$, en cada múltiplo de $\frac{\pi}{2}$ vale cero; ejemplo: $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$.

Conclusión

Por lo tanto tiene polos simples en los puntos:

$(2n+1) \frac{\pi}{2}$

$n=0,\pm1,\pm2,...$


Realizado por: Nancy Martínez Durán (discusión) 01:23 4 jul 2015 (CDT)


Ejercicio 22

Determine el polo de $f(z)={\displaystyle \frac{e^{z}}{z^{2}}}$

Procedimiento

Definimos como $g(z)=e^{z}$ y a $h(z)=z^{2}$, tal que $f(z)={\displaystyle \frac{g(z)}{h(z)}}$, buscamos ceros de la función $h(z)$ tal que no sean ceros de $g(z)$, el único punto $z_{0}$ donde $h(z)$ es cero es en $z_{o}=0$.

Derivando la función $h(z)$

$h^{\prime}(z)=2z$ evaluada en $z_{0}$ tenemos $h^{\prime}(z_{0})=0$

$h^{\prime\prime}(z)=2$ evaluada en $z_{0}$ tenemos $h^{\prime\prime}(z_{0})=2$

Conclusión

Por lo tanto la función $f(z)={\displaystyle \frac{e^{z}}{z^{2}}}$ tiene un polo de orden 2 en $z_{0}=0$.


Elaborado por:Jose Emmanuel Flores Calderón (discusión) 21:31 2 jul 2015 (CDT)


Ejercicio 23

Teorema:

si las funciones $g$ y $h$ son analíticas en $z=z_{0}$ y $h$ tiene un cero de orden $n$ en $z=z_{0}$ y $g(z_{0})\neq0,$entonces la función $f(z)=\frac{g(z)}{h(z)}$ tienen un polo de orden $n$ en $z=z_{0}$

$f(z)=\frac{g(z)/g(z)}{(z-z_{0})^{n}}$

determine el orden de los polos de la función dada

Procedimiento

$f(z)=\frac{1}{1+e^{z}}$

si escribimos $e^{z}$en la forma trigonométrica con $z=a+ib$ de tal forma que $e^{z}=-1$

entonces:

$e^{z}=e^{a}(\cos b+i\sin b)=-1\Longleftrightarrow\cos b+i\sin b=\frac{-1}{e^{a}}$ de aqui que $e^{a}=1\Longleftrightarrow a=0$ entonces

$\cos b+i\sin b=-1$ esto sucede solo si $b=...,-5\pi,-3\pi,-\pi,\pi,3\pi,5\pi,...$

como se puede ver $b$ la podemos representar de la forma $b=(2n+1)\pi,n=0,\pm1,\pm2,\pm3,...$

así podemos escribir a $e^{z}$como:

$e^{z}=\cos b+i\sin b=\cos(2n+1)\pi+i\sin(2n+1)\pi=e^{i(2n+1)\pi}con\;n=0,\pm1,\pm2,\pm3,...$

Conclusión

de lo anterior podemos concluir que el denominador tiene ceros de orden 1 en $z=i(2n+1)\pi,con\;n=0,\pm1,\pm2,\pm3,...$

ya que el numerador no es cero (ya que es constante) en cualquiera de estos valores se deduce del teorema que $f$ tiene n polos simples en $z=i(2n+1)\pi,con\;n=0,\pm1,\pm2,\pm3,...$


Realizado por: Francisco Medina Albino (discusión) 00:06 3 jul 2015 (CDT)


Ejercicio 25

Determine el orden de los polos de

Como tiene dos puntos singulares que es en y en

Inciso a

a) Analizando para

Podemos escribir la función como

Ahora tomando el desarrollo de Maclaurin del seno

Por lo que

Ahora factorizando un tenemos que la función queda

Por lo que tiene la forma de

Con

en donde y es es un cero de orden (Por lo que es un cero simple.)


Inciso b

b) Para

En donde la función se puede expresar como


Por lo que con el teorema 6.4.2 esta función tiene un polo simple en


Pero podemos resolverlo de otra forma.

Sea y definimos a y a , donde analizando; vemos que el cero en p(z) es en y que no es cero en , por lo que si derivamos a p(z) tenemos que

Por lo que concluimos que tiene un polo de orden uno o un polo simple en .


Concluyendo con el ejercicio tiene un cero simple en y tiene un polo simple en




Realizado por:Pablo (discusión) 20:31 3 jul 2015 (CDT)


Ejercicio 31

En el inciso (b) del ejemplo 2 de la sección 6.3, hemos demostrado que la representación en serie de Laurent de $f(z) = \dfrac{1}{z(z-1)}$. Valida para $|z|<1$ es:

Procedimiento

\[ f(z)= \dfrac{1}{z^{2}}+\dfrac{1}{z^{3}}+\dfrac{1}{z^{4}}+\dfrac{1}{z^{5}}+...\]


El punto $z=0$ es una singularidad aislada de $f$, y la serie de Laurent contiene un número infinito de términos que contienen potencias enteras negativas de $z$. Analice ¿Quiere esto decir que $z=0$ es una singularidad esencial de $f$ ? Defina su respuestas con argumentos matemáticos.


Si la parte principal contiene un numero infinito de ceros de términos distintos de cero entonces $z=z_{0}$. Se llama singularidad esencial.


$(1)$ Determinar la parte principal en los puntos singulares, en este caso $z=0$.


\[ f(z)= \dfrac{1}{z(z-1)}\]

\[ f(z) = -\sum_{n=1}^\infty z^{n-1}+\frac{1}{z}\]

Entonces la parte principal de $f(z)$ en $z=0$ es:

\[ \dfrac{-1}{z}\]


Si $z=z_{0}$ es un polo de orden 1 entonces la pate principal contiene exactamente un término con coeficiente distinto de $a_{-1}$. Un polo de orden 1 se llama polo simple.


Demostrar que $z=0$ es un polo simple

Conclusión

\[ \lim_{z \rightarrow 0} |f(z)|= \lim_{z \rightarrow 0}\dfrac{1}{|z^{2}-z|}=\dfrac{1}{|\lim_{z \rightarrow 0} z^{2}-z|}=\infty\]

Esto demuestra lo que enuncia el problema "contiene un número infinito de términos que contienen potencias enteras negativas de $z$". Por tanto es una singularidad esencial.



Realizado por:Esther Sarai (discusión) 22:57 1 jul 2015 (CDT)Esther Sarai


Ejercicio 32

Supongamos que $f$ y $g$ son funciones analíticas y $f$ tiene un cero de orden $m$ y $g$ tiene un cero de orden $n$ en $z=z_0$. Analice: ¿Cuál es el orden del cero de $fg$ en $z_0$?, ¿y de $f+g$ en $z_0$?


Sol.

Por el problema y del Teorema para el cero de orden $n$, tenemos que las funciones $f$ y $g$ se pueden escribir como


$f(z)=(z-z_0)^m\phi (z)$


$g(z)=(z-z_0)^n\beta (z)$


donde $\phi$ y $\beta$ son analíticas en $z=z_0$ y son diferentes de cero al evaluarlas en $z=z_0$. Multiplicándolas


$f(z)g(z)=(z-z_0)^m\phi (z)(z-z_0)^n\beta (z)=(z-z_0)^{m+n}\phi (z)\beta (z)$


Definamos $H(z)=f(z)g(z)$ y $\mu (z)=\beta (z)\phi (z)$. Sustituimos


$f(z)g(z)=H(z)=(z-z_0)^{m+n}\mu (z)$


$H(z)=(z-z_0)^{m+n}\mu (z)$


Dado que $\beta$ y $\phi$ son analíticas y a la vez distintas de cero en $z=z_0$, se tiene que $\mu (z)$ también sera analítica y diferente de cero en $z=z_0$. Por lo anterior, es fácil notar que $H(z)$ esta escrita como el Teorema para el cero de orden $n$, pero nuestro exponente es $n+m$, por lo que concluimos que el producto de $f$ y $g$ tiene un cero de orden $n+m$.


Para la suma $f+g$ definamos una función $Q(z)=f(z)+g(z)$. Sabemos por el problema que en el punto $z=z_0$, independientemente, la función $f$ tiene derivadas con valor cero hasta la derivada $f^{(m-1)}(z_0)$ y la función $g$ hasta la derivada $g^{(n-1)}(z_0)$. Así, la función $Q(z)$ tendrá derivadas con valor cero hasta que alcancemos la derivada $m$-ésima de $f$ o $n$-ésima de $g$, dependiendo del valor de $m$ y $n$.


Para el caso que $m>n$ la función $Q(z)$ tendrá un cero de orden $n$.


$Q(z)^{(n)}=f^{(n)}+g^{(n)}=g^{(n)}$


y $Q$ se puede escribir como $Q(z)=(z-z_0)^n\phi(z)$ donde $\phi (z)$ es analítica y diferente de cero en $z_0$.


Si $n>m$ la función $Q(z)$ tendrá un cero de orden $m$.


$Q(z)^{(m)}=f^{(m)}+g^{(m)}=g^{(m)}=f^{(m)}$

Conclusión

y $Q$ se puede escribir como $Q(z)=(z-z_0)^m\phi(z)$ donde igualmente $\phi (z)$ es analítica y diferente de cero en $z_0$.


Realizado por:Oscar Javier Gutierrez Varela (discusión) 18:52 30 jun 2015 (CDT)


Comentario

¿Qué pasa en $f(z)$ definida como: $f(z) = f(z)/g(z)$, donde $f(z)$ y $g(z)$ son

Sea $f(z)$ una función tal que $f(z) = f(z)/g(z)$, donde $f(z)$ y $g(z)$ son analíticas en $z_{0}$ y $f(z_{0}) \neq 0.$ Entonces, $z_{0}$ es un polo de orden m de f, si

\[ g(z_{0}) = g´(z_{0}) =g^{(m−1)}(z_{0})= 0\]

\[ g^{m}= (z_{0}) \neq 0.\]


Comentario por:Esther Sarai (discusión) 14:23 2 jul 2015 (CDT)Esther Sarai