Diferencia entre revisiones de «Compleja:Zill-Cap3.3»

De luz-wiki
Línea 180: Línea 180:
correspondiente función analítica $f(z)=u+iv$
correspondiente función analítica $f(z)=u+iv$


5.- $u(x,y)=log_{e}(x^{2}+y^{2})$
$u(x,y)=log_{e}(x^{2}+y^{2})$


'''Inciso a'''


(a) Primero comprobamos que sea armónica, para eso debe cumplir la ecuación de Laplace.
(a) Primero comprobamos que sea armónica, para eso debe cumplir la ecuación de Laplace.
Línea 200: Línea 202:
\]
\]


'''Inciso b'''


(b) Sabemos la función armonica conjugada v cumple las ecuaciones CR, por ello:
(b) Sabemos la función armónica conjugada v cumple las ecuaciones CR, por ello:


$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=\frac{2x}{x^{2}+y^{2}}$...........(1)
$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=\frac{2x}{x^{2}+y^{2}}$...........(1)
Línea 217: Línea 220:




Finalmente, la funcion armonica conjugada de u es  
Finalmente, la función armónica conjugada de u es  


\[
\[
v(x)=2arctan(\frac{y}{x})+c
v(x)=2arctan(\frac{y}{x})+c
\]
\]


(c) Reescribimos la ecuacion de la forma $f(z)=u+iv$  
 
'''Inciso c'''
 
(c) Reescribimos la ecuación de la forma $f(z)=u+iv$  
 
\[
\[
f(z)=log_{e}(x^{2}+y^{2})+i(2arctan(\frac{y}{x})+c)
f(z)=log_{e}(x^{2}+y^{2})+i(2arctan(\frac{y}{x})+c)
Línea 230: Línea 236:




--[[Usuario:Fernando Vazquez V.|Fernando Vazquez V.]] ([[Usuario discusión:Fernando Vazquez V.|discusión]]) 00:49 5 jun 2015 (CDT)
----
----
 
Realizado por:[[Usuario:Fernando Vazquez V.|Fernando Vazquez V.]] ([[Usuario discusión:Fernando Vazquez V.|discusión]]) 00:49 5 jun 2015 (CDT)
----


=== Ejercicio 6 ===
=== Ejercicio 6 ===

Revisión del 04:37 5 mar 2023


Ejercicios del capítulo 3, sección 3 del libro, A First Course in Complex Analysis with Applications de Zill y Shanahan.


Sección 3.3

Ejercicio 1

a) compruebe que la función dada es armónica en un dominio apropiado .

b) Determine , la armónica conjugada de ,

c)forme la correspondiente función analítica .


Inciso c 

a)De las derivadas parciales:

Vemos que satisface la ecuación de Laplace.

Inciso b 

b)Dado que la función armónica conjugada debe satisfacer las ecuaciones de Cauchy-Riemann :

Debemos tener:

Integrando parcialmente la primera ecuación respecto a la variable se obtiene , la derivada parcial respecto a de esta ultima ecuación es :

por lo cual

por lo cual :


Inciso c 

c) la función compleja resultante es:


Realizado por: Anahi Limas (discusión) 12:02 5 jun 2015 (CDT)


Ejercicio 2

Compruebe que la función $U(x,y)=2x-2xy$ es armónica en una adecuada dominio D.

Se dice que una función es armónica si cumple que:

\[ \nabla^{2}\,U=\frac{\partial^2 U}{\partial x^{2}}+\frac{\partial^2 U}{\partial y^2}=0 \]

calculemos pues las segundas parciales: \[ \frac{\partial^2 U}{\partial x^2}=\frac{\partial}{\partial x}\frac{\partial (2x-2xy)}{\partial x}=\frac{\partial (2-2y)}{\partial x}=0 \]

Conclusión 

\[ \frac{\partial^2 U}{\partial y^2}=\frac{\partial}{\partial y}\frac{\partial (2x-2xy)}{\partial y}=\frac{\partial (-2x)}{\partial y}=0 \]


Por tanto U es armónica en todo el plano complejo ($\mathbb{C}$).


Realizado por: Tlacaelel Cruz (discusión) 21:37 2 jun 2015 (CDT)


Ejercicio 3

En los problemas 1-8 , compruebe que la función dada u es armónica en una adecuada dominio D.


$U\left(x,y\right)=x^{2}-y^{2}$

una función es armónica si cumple con lo siguiente:

$\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=0$ $\nabla^{2}=0$

entonces calculemos:

$\frac{\partial^{2}u}{\partial x^{2}}=2$

$\frac{\partial^{2}u}{\partial y^{2}}=-2$

Conclusión 

entonces

$\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=2-2=0$

por tanto U es armónica


Realizado por: Martin Flores Molina (discusión) 14:27 30 mayo 2015 (CDT)


ejercicio 4

$u(x,y)=x^{3}-3xy^{2}$

Inciso a 

(a) compruebe que la función dada u es armónica en un dominio apropiado D

$\frac{\partial u}{\partial x}=3x^{2}-3y^{2}$ ;$\frac{\partial^{2}u}{\partial x^{2}}=6x$

$\frac{\partial u}{\partial y}=-6xy$ ; $\frac{\partial^{2}u}{\partial y^{2}}=-6x$

$\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=6x-6x=0$

$\nabla^{2}u=0$

por lo tanto u(x,y) es armónica


Inciso b

(b) determine v(x,y), la armónica conjugada de u

primero tomamos en cuenta que :

$\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}$ y $\frac{\partial v}{\partial x}=-(\frac{\partial u}{\partial y})$

$\frac{\partial u}{\partial x}=3x^{2}-3y^{2}=\frac{\partial v}{\partial y}$ ....(1)

$-\frac{\partial u}{\partial y}=-(-6xy)=6xy=\frac{\partial v}{\partial x}$ ....(2)

en (1) integramos respecto a y

$3x^{2}y-y^{3}+h(x)$

ahora derivamos respecto a x

$6xy+h'(x)$

sustituimos en (2)

y obtenemos que $h'(x)=0$ por lo tanto $h(x)=C$

entonces obtenemos que

$v(x,y)=3x^{2}y-y^{3}+C$


Inciso c

(c)forme la correspondiente función analítica

$f(z)=(x^{3}-3xy^{2})+i(3x^{2}y-y^{3}+C)$



Realizado por: Juan Daniel Rivera Bautista (discusión) 00:09 3 jun 2015 (CDT)


Ejercicio 5

(a) Compruebe que la función dada u es armónica en un dominio apropiado D, (b) determine v(x,y), la armónica conjugada de u, y (c) forme la correspondiente función analítica $f(z)=u+iv$

$u(x,y)=log_{e}(x^{2}+y^{2})$


Inciso a

(a) Primero comprobamos que sea armónica, para eso debe cumplir la ecuación de Laplace.

$\nabla^{2}u=0=\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}$


Entonces:

$\frac{\partial u}{\partial x}=\frac{2x}{x^{2}+y^{2}}\Longrightarrow\frac{\partial^{2}u}{\partial x^{2}}=\frac{2(x^{2}+y^{2})-4x^{2}}{(x^{2}+y^{2})^{2}}$

$\frac{\partial u}{\partial y}=\frac{2y}{x^{2}+y^{2}}\Longrightarrow\frac{\partial^{2}u}{\partial y^{2}}=\frac{2(x^{2}+y^{2})-4y^{2}}{(x^{2}+y^{2})^{2}}$

Ahora:

\[ \frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=\frac{2(x^{2}+y^{2})-4x^{2}}{(x^{2}+y^{2})^{2}}+\frac{2(x^{2}+y^{2})-4y^{2}}{(x^{2}+y^{2})^{2}}=\frac{4(x^{2}+y^{2})-4x^{2}-4y^{2}}{(x^{2}+y^{2})^{2}}=0 \]

Inciso b

(b) Sabemos la función armónica conjugada v cumple las ecuaciones CR, por ello:

$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=\frac{2x}{x^{2}+y^{2}}$...........(1)

$\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=\frac{2y}{x^{2}+y^{2}}$........(2)


Si integramos parcialmente (1) respecto a "y" y obtenemos $v(x)=2arctan(\frac{y}{x})+h(x)$ y si la derivamos parcialmente respecto a x tenemos que:

$\frac{-2y}{x^{2}(1+\frac{y^{2}}{x^{2}})}+h'(x)=\frac{-2y}{x^{2}+y^{2}}+h'(x)=\frac{\partial v}{\partial y}$.....(3)

Sustituimos el resultado de (3) en (2) y se tiene:

$h'(x)=0\Longrightarrow h(x)=c$


Finalmente, la función armónica conjugada de u es

\[ v(x)=2arctan(\frac{y}{x})+c \]


Inciso c

(c) Reescribimos la ecuación de la forma $f(z)=u+iv$

\[ f(z)=log_{e}(x^{2}+y^{2})+i(2arctan(\frac{y}{x})+c) \]



Realizado por:Fernando Vazquez V. (discusión) 00:49 5 jun 2015 (CDT)


Ejercicio 6

(a) Compruebe que la función dada $u$ es armónica en un dominio apropiado $D$. b) Determine $v(x,y)$, la armónica conjugada de $u$ y forme la correspondiente función analítica $f(z)=u+iv$

$u(x,y)=cosxcoshy$

a) Para que una función sea armónica tiene que cumplir:

$\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}$= $\nabla^{2}u=0$

Entonces:

$\frac{\partial u}{\partial x}=-senxcoshy$ ;$\frac{\partial^{2}u}{\partial x^{2}}=-cosxcoshy$

$\frac{\partial u}{\partial y}=cosxsenhy$ ; $\frac{\partial^{2}u}{\partial y^{2}}=cosxcoshy$

$\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=cosxcoshy-cosxcoshy=0$

$\nabla^{2}u=0$

Por lo tanto u(x,y) es armónica


(b) Encontrar v(x,y), la armónica conjugada de u

Tenemos las Ecuaciones de Cauchy-Riemann  :

$\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}$ y $\frac{\partial v}{\partial x}=-(\frac{\partial u}{\partial y})$

$\frac{\partial u}{\partial x}=-senxcoshy=\frac{\partial v}{\partial y}$ ....(1)

$-\frac{\partial u}{\partial y}=-(cosxsenhy)=\frac{\partial v}{\partial x}$ ....(2)

Integramos (1) respecto a "y"

$v(x,y)=-senxsenhy+g(x)$

Ahora derivamos $v$ respecto a "x"

$v(x,y)'= -cosxsenhy+g'(x)$........(3)


Sustituimos el resultado de (3) en (2) y se tiene:

$g'(x)=0; g(x)=c$


Entonces la función armónica conjugada de u es

\[ v(x,y)=-senxsenhy+c \]


Por lo tanto reescribimos la ecuación de la forma $f(z)=u+iv$ \[ f(z)=(cosxcoshy+(-senxsenhy+c)) \]

Nancy Martínez Durán (discusión) 01:24 5 jun 2015 (CDT)



Ejercicio 7

Compruebe que la función dada $u$ es armónica en un dominio apropiado $D$. Determine $v(x,y)$, la armonica conjugada de $u$ y forme la correspondiente función analítica $f(z)=u+iv$


$u(x,y)=exp(x)[xcosy-ysiny]$


Solución:


De las derivadas parciales:


$\dfrac{\partial u}{\partial x}=exp(x)cosy+exp(x)[xcosy-ysiny]$, $\frac{\partial^{2}u}{\partial x^{2}}=2exp(x)cosy+exp(x)[xcosy-ysiny]$


$\dfrac{\partial u}{\partial y}=exp(x)[-ycosy-siny-xsiny]$, $\frac{\partial^{2}u}{\partial x^{2}}=exp(x)[-2cosy-xcosy+ysiny]$


De acuerdo a la ecuación de Laplace


$\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=0+0=0$, esto demuestra que $u(x,y)$ es armónica


Dado que la ecuación es armónica de satisfacer las ecuaciones de Cauchy- Riemann


$\dfrac{\partial v}{\partial y}=\dfrac{\partial u}{\partial x}$ y,


$\dfrac{\partial v}{\partial x}=-\dfrac{\partial u}{\partial y}$


Donde


$\dfrac{\partial v}{\partial y}=exp(x)cosy+exp(x)[xcosy-ysiny]$ y $\dfrac{\partial v}{\partial x}=exp(x)[ycosy+siny+xsiny]$


Integrado parcialmente la primera ecuación respecto $y$


$v(x,y)=exp(x)[ycosy+xsiny]+h(x)$


La derivada parcial respecto a $x$ es


$\dfrac{\partial v}{\partial x}=exp(x)siny+exp(x)[ycosy+xsiny]+h'(x)$


Sustituyendo en la segunda ecuación obtenemos $h'(x)=0$ así $h(x)=C$


Por lo tanto la función armónica conjugada de $u$ es $v(x,y)=exp(x)[ycosy+xsiny]+C$


Para finalizar la función compleja resultante es


$f(z)=exp(x)[xcosy-ysiny]+i[exp(x)[ycosy+xsiny]+C]$


Miguel Medina Armendariz (discusión) 21:06 3 jun 2015 (CDT)


Ejercicio 8

Compruebe que la función dada $u$ es armónica en un dominio apropiado $D$. Determine $v(x,y)$, la armonica conjugada de $u$ y forme la correspondiente función analítica $f(z)=u+iv$

Para $u(x,y)=-e^{-x} \sin{y}$

Esta funcion es armonica en un dominio D solo si satisface la ecuacion de laplace, esto es;

Calculando las respectivas derivadas parciales obtendremos lo siguiente;

De aqui es claro que se cumple la ecuacion de Laplace;


Por lo cual la funcion es armonica

Para determinar$v(x,y)$ que es la armonica conjugada rrecurriremos alas ecuaciones de Cauchy-Riemman Ya que La sulucion a esas ecuaciones nos dara la conjugada,que es lo que nesesitamos, asi entonces se deve de cumplir que;

y tambien que;

De esta manera tendremos que;

Asi despejando $dy$ e integrando respecto a $y$ tendremos;

Donde $h(x)$ es consecuencia de la integracion y es una constante que depende de $x$

Ahora derivando el resultado anterior respecto a $x$ tendremos que;

Para poder determinar a $h(x)$ devemos igualar la ecuacion anterior con $-\dfrac{\partial u}{\partial y}$

Asi

$e^{-x} \cos{y}=e^{-x} \cos{y}+h'(x)$

De donde esclaro que $h'(x)=0$ asi integrando ambas partes tendremos que $h(x)=C$ donde $C=constante$

Una vez echo esto regresamos a nuestra funcion $v(x,y)$ donde ahora ya es claro que;

Siendo esta ultima la armonica conjugada

Y asi podemos formar la correspomdiente funcion analitica y dar por terminado el problema

--Cristian Alfredo Ruiz Castro (discusión) 19:34 4 jun 2015 (CDT)


Ejercicio 9

(a)Compruebe que la función dada es armónica en un dominio apropiado D.

(b)Determine $v(x,y)$, la armónica conjugada de $u$.

(c)Forme la correspondiente función analítica $f(z)=u+iv$.

$u(x,y)=\frac{x}{x^{2}+y^{2}}$

Para saber si la función $u(x,y)$ es armónica tiene que satisfacer con la ecuación de laplace, entonces se calculan las primeras y segundas derivadas de la función.

$\frac{\partial u}{\partial x}=\frac{(x^{2}+y^{2})-x(2x)}{(x^{2}+y^{2})^{2}}=\frac{x^{2}+y^{2}-2x^{2}}{(x^{2}+y^{2})^{2}}=\frac{y^{2}-x^{2}}{(x^{2}+y^{2})^{2}}$


$\frac{\partial u}{\partial y}=\frac{-x(2y)}{(x^{2}+y^{2})^{2}}=\frac{-2xy}{(x^{2}+y^{2})^{2}}$


$\frac{\partial^{2}u}{x^{2}}=\frac{-2x(x^{2}+y^{2})^{2}-(y^{2}-x^{2})(2)(2x)(x^{2}+y^{2})}{(x^{2}+y^{2})^{4}}=\frac{(x^{2}+y^{2})[(-2x)(x^{2}+y^{2})-(y^{2}-x^{2})(2)(2x)]}{(x^{2}+y^{2})^{4}}=\frac{(-2x)(x^{2}+y^{2})-(y^{2}-x^{2})(2)(2x)}{(x^{2}+y^{2})^{3}}=\frac{(-2x^{3}-2xy^{2})-(4xy^{2}-4x^{3})}{(x^{2}+y^{2})^{3}}$

$=\frac{-2x^{3}-2xy^{2}-4xy^{2}+4x^{3}}{(x^{2}+y^{2})^{3}}=\frac{-6xy^{2}+2x^{3}}{(x^{2}+y^{2})^{3}}$


$\frac{\partial^{2}u}{\partial y^{2}}=\frac{(x^{2}+y^{2})^{2}(-2x)-(-2xy)(2)(2y)(x^{2}+y^{2})}{(x^{2}+y^{2})^{4}}=\frac{(x^{2}+y^{2})[(-2x)(x^{2}+y^{2})-(-2xy)(2)(2y)]}{(x^{2}+y^{2})^{4}}=\frac{(-2x)(x^{2}+y^{2})-(-2xy)(2)(2y)}{(x^{2}+y^{2})^{3}}=\frac{-2x^{3}-2xy^{2}+8xy^{2}}{(x^{2}+y^{2})^{3}}=\frac{-2x^{3}+6xy^{2}}{(x^{2}+y^{2})^{3}}$

Entonces vemos que al sacar el lapaciano:

$\frac{-6xy^{2}+2x^{3}}{(x^{2}+y^{2})^{3}}+\frac{-2x^{3}+6xy^{2}}{(x^{2}+y^{2})^{3}}=\frac{2x^{3}-2x^{3}+6xy^{2}-6xy^{2}}{(x^{2}+y^{2})^{3}}=0$

Por lo tanto queda demostrado que nuestra función es armónica.


(b)Para determinar la fución armónica conjugada $v(x,y)$ Sabemos a priori que debe satisfacer las ecuaciones de Cauchy-Riemann: $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x};\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

Por lo tanto:

$\frac{\partial v}{\partial y}=\frac{y^{2}-x^{2}}{(x^{2}+y^{2})^{2}}......(1)$

y

$\frac{\partial v}{\partial x}=\frac{2xy}{(x^{2}+y^{2})^{2}}......(2)$

Integrando parcialmente (2) respecto a $x$ nos queda:

$v(x,y)=\int\frac{2xy}{(x^{2}+y^{2})^{2}}dx$

Y haciendo el respectivo cambio de variable, integrando y resolviendo nos queda:

$v(x,y)=\frac{-y}{x^{2}+y^{2}}+g(y)$

La derivada parcial con respecto a $y$ de esta última ecuación es:

$\frac{\partial v}{\partial y}=\frac{-(x^{2}+y^{2})-(-y)(2y)}{(x^{2}+y^{2})^{2}}+g'(y)=\frac{-x^{2}-y^{2}+2y^{2}}{(x^{2}+y^{2})^{2}}+g'(y)=\frac{-x^{2}+y^{2}}{(x^{2}+y^{2})^{2}}+g'(y)$

Pero sabemos por la ecuación (2) que:

$\frac{-x^{2}+y^{2}}{(x^{2}+y^{2})^{2}}+g'(y)=\frac{y^{2}-x^{2}}{(x^{2}+y^{2})^{2}}$

Por lo que se concluye que $g'(y)=0$

Entonces:

$v(x,y)=\frac{-y}{x^{2}+y^{2}}$

es la ecuación armónica conjugada:

Por lo tanto, la función análitica se ve como:

$f(x)=\frac{x}{x^{2}+y^{2}}+i\frac{-y}{x^{2}+y^{2}}$


--A. Martín R. Rabelo (discusión) 21:47 6 jun 2015 (CDT)


Ejercicio 9 (versión en inglés)

Para cada una de las funciones u (x, y) en los problemas 1, 3, 5, y 7, encontrar v (x, y), el conjugado armónico de u. Forma la función analítica correspondiente f(z)=u+iv

PROBLEMA 1 u(x,y)=x

Tomando que debe ser una función analitica entonces u debe satisfacer C-R


$$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y}=- \frac{\partial v}{\partial x}$$

Pero necesitamos conocer quien es v(x,y), entonces tomamos en cuenta que:


$$\frac{\partial u}{\partial x}=1=\frac{\partial v}{\partial y}$$

Integrando tenemos

$$\int{dv}=\int{dy}$$

$$v=y+h(x)$$

$$h(x)=cte=C$$

$$v=y+C$$

Por lo tanto v es la función armonica de u

$$f(z)=u+iv$$

$$\therefore f(z)=x+i(y+c)$$


PROBLEMA 2 u(x,y)=x^2-y^2

De C-R sabemos que :

$$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y}=- \frac{\partial v}{\partial x}$$

De aqui podemos conocer quien es v(x,y) donde

$$\frac{\partial u}{\partial x}=2x=\frac{\partial v}{\partial y}$$

Integrando

$$\int{dv}=\int{2x}dy$$

$$ v=2xy+h(x) $$

$$h(x)=cte=C$$

$$ v=2xy+C $$

Por lo tanto v es funcion armonica de u

$$f(z)=u+iv$$

$$\therefore f(z)=x^2-y^2+i(2xy+c)$$

PROBLEMA 3 u(x,y)=log_{e}(x^2+y^2)

Tomamos las ecuaciones de C-R

$$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y}=- \frac{\partial v}{\partial x}$$

Entonces podemos conocer a v(x,y)

$$\frac{\partial u}{\partial x}=\frac{2x}{x^2+y^2}=\frac{\partial v}{\partial y}$$

Integrando

$$\int{dv}=\int{\frac{2x}{x^2+y^2}}dy$$

$$ v=2 tan^-1(\frac{y}{x})+h(x) $$

$$h(x)=cte=C$$

$$ v=2 tan^{-1}(\frac{y}{x})+C $$

Por lo tanto v es funcion armonica de u

$$f(z)=u+iv$$

$$\therefore f(z)=log_{e}(x^2-y^2)+i(2tan^{-1}(\frac{y}{x})+c)$$


PROBLEMA 4 u(x,y)=e^{x}(xcosy-yseny)

$$u=x e^{x}cosy-y e^{x}seny$$

Tomando C-R

$$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y}=- \frac{\partial v}{\partial x}$$

Entonces podemos conocer a v(x,y)

$$\frac{\partial u}{\partial x}= e^{x}cosy+e^{x}(xcosy-yseny)= \frac{\partial v}{\partial y}$$

Integrando

$$\int{dv}=\int{e^{x}cosy+e^{x}(xcosy-yseny)}dy$$

$$ v= e^{x}(xseny+ycosy)+h(x) $$

$$h(x)=cte=C$$

$$ v= e^{x}(xseny+ycosy)+C $$

Por lo tanto v es funcion armónica de u

$$f(z)=u+iv$$

$$\therefore f(z)=e^{x}(xcosy-yseny)+i(e^{x}(xseny+ycosy)+C)$$


--Samantha Martinez (discusión) 18:02 05 Junio 2015 (CDT)

Ejercicio 10

a) Compruebe que la fnción dad de u es ármonica

b)Determinar v(x,y) y la ármonica conjugada

c) Formar como f(z)=u+iv

$u\left(x,y\right)=arctan\left(\frac{-y}{x}\right)$

Solución:

Para saber si la función es ármonica debe satisfacer la ecuación de Laplace:

$\nabla^{2}=0$

Sacamos las segundas derivadas parciales respecto a x y a y para saber si satisface:

$\frac{\partial u}{\partial x}=\frac{y}{x^{2}+y^{2}}$

$\frac{\partial^{2}u}{\partial x^{2}}=-\frac{2xy}{\left(x^{2}+y^{2}\right)^{2}}$

$\frac{\partial u}{\partial y}=-\frac{x}{x^{2}+y^{2}}$

$\frac{\partial^{2}u}{\partial y^{2}}=\frac{2xy}{x^{2}+y^{2}}$

entonces así podemos ver que satisface Laplace

$\nabla^{2}u=\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=-\frac{2xy}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2xy}{\left(x^{2}+y^{2}\right)^{2}}=0$

Ahora debemos sacar la conjugada de u

Para esto invocamos a las ecuaciones de Cauchy-Riemann

$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$....(1)

$\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$...(2)

y asi tomando (1)

$\frac{\partial v}{\partial y}=\frac{y}{x^{2}+y^{2}}$

Integrando respecto a y tenemos:

$v=\frac{1}{2}ln\left|x^{2}+y^{2}\right|+f\left(x\right)$

Derivando parcialmente respecto a x

$\frac{\partial v}{\partial x}=\frac{x}{x^{2}+y^{2}}+\frac{\partial f\left(x\right)}{\partial x}$

Igualando (1) por las acuaciones de C.R.tenemos:

$\frac{\partial f\left(x\right)}{\partial x}=0$

Por lo tanto tenemos que la función ármonica cinjugada es:

$v\left(x,y\right)=\frac{x}{x^{2}+y^{2}}+C$

Finalmente tenemos que:

$f\left(z\right)=arctan\left(\frac{-y}{x}\right)+i\left(\frac{x}{x^{2}+y^{2}}+C\right)$

Resuelto por Luis Enrique Martínez Valverde (discusión) 23:42 5 jun 2015 (CDT)



Ejercicio 11

Compruebe que la función dada $u$ es armónica en un dominio adecuado $D$. Determinar su armónica conjugada $v$ y encontrar una función analítica $f(z)=u+iv$ que satisfaga la condición indicada.

$u(x,y)=xy+x+2y-5$ , $f(2i)=-1+5i$


$Solución: $

De las derivadas parciales:

$\dfrac{\partial u}{\partial x}=y+1$, $\frac{\partial^{2}u}{\partial x^{2}}=0$

$\dfrac{\partial u}{\partial y}=x+2$, $\frac{\partial^{2}u}{\partial x^{2}}=0$

vemos que la $u$ satisface la ecuación de Laplace

$\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=0+0=0$, por tanto $u$ es armónica

Dado que la función armónica conjugada $v$ debe satisfacer las ecuaciones de Cauchy- Riemann

$\dfrac{\partial v}{\partial y}=\dfrac{\partial u}{\partial x}$ y, $\dfrac{\partial v}{\partial x}=-\dfrac{\partial u}{\partial y}$

debemos tener

$\dfrac{\partial v}{\partial y}=y+1$ y $\dfrac{\partial v}{\partial x}=-(x+2)$ , $...$ $(1)$

Integrado parcialmente la primera ecuación en (1) respecto a la variable $y$ se obtiene

$v(x,y)=\frac{y^2}{2}+y+h(x)$

La derivada parcial respecto a $x$ de esta última ecuación es

$\dfrac{\partial v}{\partial x}=h'(x)$

Cuando se sustituye este resultado en la segunda ecuación de (1) obtenemos $h'(x)=-(x+2)$, y así $h(x)=-\frac{x^2}{2}-2x+C$ , donde $C$ es una constante real.

Por lo tanto, la función armónica conjugada de $u$ es $v(x,y)=\frac{y^2}{2}+y-\frac{x^2}{2}-2x+C$

combinando $u$ y su armónica conjugada $v$ como $u(x,y)-iv(x,y)$, la función compleja resultante

$f(z)=(xy+x+2y-5)+i(\frac{y^2}{2}+y-\frac{x^2}{2}-2x+C)$

Así, evaluando tenemos

$z=2i=0+2i$, $x=0$, $y=2$

$f(2i)=((0)(2)+0+2(2)-5)+i(\frac{2^2}{2}+2-\frac{0^2}{2}-2(0)+C)=-1+4i$

Para que $f(2i)=-1+5i$, la constante debe ser, C=1

Por tanto la función que satisface la igualdad es: $f(z)=(xy+x+2y-5)+i(\frac{y^2}{2}-\frac{x^2}{2}+y-2x+1)$

Evaluando nuevamente vemos que satisface la condición indicada

$f(2i)=((0)(2)+0+2(2)-5)+i(\frac{2^2}{2}+2-\frac{0^2}{2}+2(0)+1)=-1+5i$


--Emmanuell Castro Flores (discusión) 22:58 1 jun 2015 (CDT)



Compruebe que la función dada $u$ es armónica en un dominio adecuado $D$. Determinar su armónica conjugada $v$ y encontrar una función analítica $f(z)=u+iv$ que satisfaga la condición indicada.

$u(x,y)=xy+x+2y-5x$$ ; $$f(2i)=-1+5i$

$Solución: $

De las derivadas parciales:

$\dfrac{\partial u}{\partial x}=y+1$$, $$\frac{\partial^{2}u}{\partial x^{2}}=0$

$\dfrac{\partial u}{\partial }=x+2$$, $$\frac{\partial^{2}u}{\partial x^{2}}=0$

vemos que la $u$ satisface la ecuación de Laplace

$\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=0+0=0$ Por tanto $u$ es armónica

Dado que la función armónica conjugada $v$ debe satisfacer las ecuaciones de Cauchy- Riemann

$\dfrac{\partial v}{\partial y}=\dfrac{\partial u}{\partial x},$ $\dfrac{\partial v}{\partial x}=-\dfrac{\partial u}{\partial}$ y


$\dfrac{\partial v}{\partial y}=\dfrac{\partial u}{\partial x}$ y, $\dfrac{\partial v}{\partial x}=-\dfrac{\partial u}{\partial y}$

debemos tener

$\dfrac{\partial v}{\partial y}=y+1$$ y $$\dfrac{\partial v}{\partial x}=-(x+2)$

Integrado parcialmente la primera ecuación en (1) respecto a la variable $y$ se obtiene

$v(x,y)=\frac{y^2}{2}+y+h(x)$

La derivada parcial respecto a $x$ de esta última ecuación es

$\dfrac{\partial v}{\partial x}=h'(x)$

Cuando se sustituye este resultado en la segunda ecuación de (1) obtenemos $h'(x)=-(x+2)$, y así $h(x)=-\frac{x^2}{2}+2x+C$ , donde $C$ es una constante real.

Por lo tanto, la función armónica conjugada de $u$ es $$v(x,y)=\frac{y^2}{2}+y-\frac{x^2}{2}+2x+C$$

combinando $u$ y su armónica conjugada $v$ como $$u(x,y)-iv(x,y)$$, la función compleja resultante

$f(z)=(xy+x+2y-5)+i(\frac{y^2}{2}+y-\frac{x^2}{2}+2x+C)$

Así, evaluando tenemos

$z=2i=0+2i$, $x=0$; $y=2$

$f(2i)=((0)(2)+0+2(2)-5)+i(\frac{2^2}{2}+2-\frac{0^2}{2}+2(0)+C)=-1+4i$

Para que $f(2i)=-1+5i$, la constante debe ser, C=1

Por tanto la función que satisface la igualdad es:

$f(z)=(xy+x+2y-5)+i(\frac{y^2}{2}+y-\frac{x^2}{2}+2x+1)$

Evaluando nuevamente vemos que satisface la condición indicada

$f(2i)=((0)(2)+0+2(2)-5)+i(\frac{2^2}{2}+2-\frac{0^2}{2}+2(0)+1)=-1+5i$



Emmanuell Castro Flores (discusión) 22:54 1 jun 2015 (CDT)


Ejercicio 12

Comprobar que la función dada $u$ es armónica en un dominio adecuado $D$. Determinar su armónica conjugada $v$ y encontrar una función analítica $f(z)=u+iv$ que satisfaga la condición indicada

$u(x,y)=4xy^3-4x^3y+x$; $f(1+i)=5+4i$

Sol. Dado que $u$ es armónica su conjugada también obedece las ecuaciones de Cauchy-Riemann, por lo que derivando:


$\dfrac{\partial u}{\partial x}=4y^3-12x^2y+1=\dfrac{\partial v}{\partial y}$, integrando respecto a $y$:


$v(x,y)=y^4-6x^2y^2+y+g(x)$


Y de la otra igualdad


$-\dfrac{\partial u}{\partial y}=-12xy^2+4x^3=-12xy^2+g'(x)=\dfrac{\partial v}{\partial x}$


Despejamos a $g'$ e integramos: $g'(x)=4x^3$, $g(x)=x^4+cte$


Por lo que la función conjugada de $u$ es: $v(x,y)=y^4-6x^2y^2+y+x^4+cte$


b) Con $f(z)=(4xy^3-4x^3y+x)+i(y^4-6x^2y^2+y+x^4+cte)$, la evaluamos en $z=1+i$ e igualamos con lo dado en el problema para determinar el valor de la constante;


$f(1+i)=(4-4+1)+i(1-6+1+1+cte)=1+i(-3+cte)\neq 5+4i$, al ser la parte real diferentes, la igualdad no es válida por lo que para que la función $f$ satisfaga la relación deberá ser:


$f(z)=(4xy^3-4x^3y+x+4)+i(y^4-6x^2y^2+y+x^4+cte)$


$f(1+i)=(4-4+1+4)+i(1-6+1+1+cte)=5+i(-3+cte)=5+4i$, e igualando las partes imaginarias para obtener la constante:


$-3+cte=4$, $cte=4+3=7$


Por lo que la función que satisface la igualdad es:


$f(z)=(4xy^3-4x^3y+x+4)+i(y^4-6x^2y^2+y+x^4+7)$


la cual también satisface las ecuaciones de Cauchy-Riemann.

Oscar Javier Gutierrez Varela (discusión) 19:02 1 jun 2015 (CDT)


Ejercicio 14

Supongamos que $f(z)= u(r,\theta) + i v(r,\theta)$ es analítica en un dominio D que no contiene el origen. use la ecuaciones de Cahuchy-Riemann (10) de la seccion 3.2 en la forma $ru_{r}= v_{\theta}$ y $rv_{r}=-u_{\theta}$ para demostrar que $u(r,\theta)$ satisface la ecuación de Laplace en coordenadas polares:

\[ r^{2}\dfrac{\partial^{2}{u}}{\partial{r^{2}}} +r\dfrac{\partial{u}}{\partial{r}}+\dfrac{\partial^{2}{u}}{\partial{\theta^{2}}}=0 \]

Definiendo a $f(z)$ en su forma polar: \[ f(z)= r(\cos\theta + i \sin\theta)\]

Entonces $u$

\[ u= r \cos\theta\]

Calculamos las derivadas parciales:

\[ r^{2}\dfrac{\partial^{2}{u}}{\partial{r^{2}}}= 0\]

\[ r\dfrac{\partial{u}}{\partial{r}}= r \cos\theta\]

\[ \dfrac{\partial{u^{2}}}{\partial^{2}{\theta}}= -r \cos\theta\]

\[ 0 + r \cos \theta -r \cos \theta = 0\]



--Esther Sarai (discusión) 22:11 3 jun 2015 (CDT)Esther Sarai


Ejercicio 15

En los problemas 15 y 16 verifique la función $u(r,\theta)$ dada es armónica en el dominio $D$ que no contiene al origen


$u(r , \theta)=r^3\cos(3\theta)$


Para que una función sea armónica debe de satisfacer la ecuación de Laplace en un dominio determinado, como la función dada $u$ esta en coordenadas polares hacemos uso del Laplaciano en coordenadas polares, el cual es:


$\nabla^2 u = r^{2}\dfrac{\partial^{2}{u}}{\partial{r^{2}}} +r\dfrac{\partial{u}}{\partial{r}}+\dfrac{\partial^{2}{u}}{\partial{\theta^{2}}}=0$


Haciendo las derivadas parciales correspondientes tenemos:


$\dfrac{\partial^{2}{u}}{\partial{r^{2}}}=6r\cos(3\theta)$


$\dfrac{\partial{u}}{\partial{r}}=3r^2\cos(3\theta)$


$\dfrac{\partial^{2}{u}}{\partial{\theta^{2}}}=-6r^3\cos(3\theta)$


Sustituyendo en el Laplaciano nos queda:


$\nabla^2 u = r^2(6r\cos(3\theta)) + r(3r^2\cos(3\theta)) - 6r^3\cos(3\theta) = 3r^3\cos(3\theta)\neq 0$


La función no cumple con la ecuación de Laplace por lo tanto la función no es armónica

Angelina Nohemi Mendoza Tavera (discusión) 15:04 4 jun 2015 (CDT)


Ejercicio 13

a) Demuestre que : es armónica en un dominio D que no contenga el origen.

b)Determine una función : que es analítica en el dominio D.

c)Exprese la función f encontrada en el inciso (b) en términos del símbolo z.

Solución

a) Para esta función de dos variables reales “x” y “y” sea armonica , es necesario que sus primeras y segundas

derivadas parciales sean continuas en un dominio D, y sastifagan la ecuación de Laplace que tiene la forma:

...(1)

Obtendremos sus derivadas parciales de primer y segundo orden de la función; simplificando se tiene:

Resumiendo los resultados anteriores,se tiene de importancia que

Sustituyendo (2) y (3) en (1) , agrupando términos ,factorizando y reduciendo se tiene:

b)Ahora encontraremos la función armonica de v, pero dado que la la función armonica de v debe satifacer la

ecuación de Cauchy- Riemann que es:

Sustituyendo (3) y (4) en las parciales anteriores de primer orden se tiene:

donde :; :

Tomamos (5) , y por variables separables, integramos con respecto a la “x”, donde obtenemos

,por cambio de variable tenemos:
finalmente sustituyendo e intergrando se tiene:
, donde h(y) es una constante en función de “y”.

Ahora obtendremos la parcial de primer orden “u(x,y)” con respecto a “y”


Igualamos (7) con (6) ,despejando h'(y) y simplificando y se tiene

, integramos


Por lo tanto, la función armonica conjugada de “v” es

La función compleja que es analítica en el dominio en D es

c) De la función anterior, factorizando “i” el término del numerador y por diferencia de cuadrados el denominador de la función, reduciendo se tiene que:

por lo tanto

--Ricardo Garcia Hernandez (discusión) 09:27 2 jun 2015 (CDT)



Ejercicio 16

Verificar que u(r,) dada es armónica en el dominio D que no contiene al origen

Primero será demostrado que a función dada es armónica, Usando la expresión de Laplace en coordenadas polares.

$\nabla^2 u = r^{2} \dfrac{\partial^{2}{u}}{\partial{r^{2}}} +r \dfrac{\partial{u}}{\partial{r}}+\dfrac{\partial^{2}{u}}{\partial{\theta^{2}}}=0$

Haciendo las derivadas parciales primero con respecto de r.

Obteniendo la segunda derivada parcial con respecto de r


Ahora si desarrollamos las parciales con respecto de , obtenemos que

Al hacer la la suma del laplaciano en polares

Por lo que siendo armónica, dado que la armónica de v tiene que cumplir las ecuaciones de Cauchy, tenemos que para f(z)


Por lo que al integrar


y al Derivar con respecto de e igualarla a la parcial de u con respecto de r por un factor de r a esta parcial de u con respecto de r.

Por lo que la derivada de g es una constante por lo que la función es

Donde c es una constante y el dominio es el plano complejo excepto el cero.

--Pablo (discusión) 10:11 5 jun 2015 (CDT)


Ejercicio 17

a) compruebe que $u(x,y)=e^{x^{2}-y^{2}}\cos(2xy)$ es armónica en un dominio adecuado D.

b) determinar su armónica conjugada $v$ y encuentre la función analítica $f(z)=u+iv$ que satisface $f(0)=1$

sacando las derivadas parciales tenemos

$u(x,y)=e^{x^{2}}e^{-y}\cos(2xy)$

$\frac{\partial u}{\partial x}=2xe^{x^{2}}e^{-y^{2}}\cos(2xy)-2ye^{x^{2}}e^{-y^{2}}\sin(2xy)$

$\frac{\partial^{2}u}{\partial x^{2}}=2e^{x^{2}}e^{-y^{2}}\cos(2xy)+4x^{2}e^{x^{2}}e^{-y^{2}}\cos(2xy)-4xye^{x^{2}}e^{-y^{2}}\sin(2xy)-4xye^{x^{2}}e^{-y^{2}}\sin(2xy)-4y^{2}e^{x^{2}}e^{-y^{2}}\cos(2xy)=(4x^{2}-4y^{2}+2)e^{x^{2}}e^{-y^{2}}\cos(2xy)-8xye^{x^{2}}e^{-y^{2}}\sin(2xy)$

$\frac{\partial u}{\partial y}=-2ye^{x^{2}}e^{-y^{2}}\cos(2xy)-2xe^{x^{2}}e^{-y^{2}}\sin(2xy)$

$\frac{\partial^{2}u}{\partial y^{2}}=-2e^{x^{2}}e^{-y^{2}}\cos(2xy)+4y^{2}e^{x^{2}}e^{-y^{2}}\cos(2xy)+4xye^{x^{2}}e^{-y^{2}}\sin(2xy)+4xye^{x^{2}}e^{-y^{2}}\sin(2xy)-4x^{2}e^{x^{2}}e^{-y^{2}}\cos(2xy)=(-4x^{2}+4y^{2}-2)e^{x^{2}}e^{-y^{2}}\cos(2xy)+8xye^{x^{2}}e^{-y^{2}}\sin(2xy)$

así tenemos

$\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=(4x^{2}-4y^{2}+2)e^{x^{2}}e^{-y^{2}}\cos(2xy)-8xye^{x^{2}}e^{-y^{2}}\sin(2xy)+(-4x^{2}+4y^{2}-2)e^{x^{2}}e^{-y^{2}}\cos(2xy)+8xye^{x^{2}}e^{-y^{2}}\sin(2xy)=0$

como $u(x,y)$ satisface la ecuación de Laplace podemos decir que es armónica en D

dado que deben de satisfacer las funciones de Cauchy-Riemann

$\frac{\partial v}{\partial x}=2ye^{x^{2}}e^{-y^{2}}\cos(2xy)+2xe^{x^{2}}e^{-y^{2}}\sin(2xy)$

$\frac{\partial v}{\partial y}=2xe^{x^{2}}e^{-y^{2}}\cos(2xy)-2ye^{x^{2}}e^{-y^{2}}\sin(2xy)$

integrando $\frac{\partial v}{\partial y}=2xe^{x^{2}}e^{-y^{2}}\cos(2xy)-2ye^{x^{2}}e^{-y^{2}}\sin(2xy)$ respecto a $y$

$v(x,y)=2xe^{x^{2}}e^{-y^{2}}\cos^{2}(xy)-2xe^{x^{2}}e^{-y^{2}}\sin^{2}(xy)+4ye^{x^{2}}e^{-y^{2}}\sin(xy)\cos(xy)+h(x)=2xe^{x^{2}}e^{-y^{2}}(\cos^{2}(xy)-\sin^{2}(xy))+4ye^{x^{2}}e^{-y^{2}}\sin(xy)\cos(xy)+h(x)$

su derivada parcial respecto de $x$ es

$\frac{\partial v}{\partial x}=2xe^{x^{2}}e^{-y^{2}}\cos(2xy)+2ye^{x^{2}}e^{-y^{2}}\sin(2xy)+h'(x)$ podemos ver que $h'(x)=0$

esto implica que:

$f(z)=e^{x^{2}-y^{2}}\cos(2xy)+i(2xe^{x^{2}}e^{-y^{2}}(\cos^{2}(xy)-\sin^{2}(xy))+4ye^{x^{2}}e^{-y^{2}}\sin(xy)\cos(xy)+c)$

evaluando en cero tenemos

$f(0)=1$

$\therefore f(z)=e^{x^{2}-y^{2}}\cos(2xy)+i(2xe^{x^{2}-y^{2}}(\cos^{2}(xy)-\sin^{2}(xy))+4ye^{x^{2}-y^{2}}\sin(xy)\cos(xy)$

--Francisco Medina Albino (discusión) 22:41 4 jun 2015 (CDT)


Ejercicio 19

a) Demuestre que : es armónica, es decir, sastiface la ecuación de Laplace

en un dominio D del espacio que no contiene al origen.

Solución

Obtenemos las derivadas de primer y segundo orden superior con respecto a cada y respectiva variable



b)¿Es el análogo bidimensional de la función en el inciso a), :,

armónica en un dominio D del plano que no contiene el origen?

Solución

La función en la parte bidimensional debe satisfacer la ecuación de Laplace:

Realizamos el mismo procedimiento que en el inciso a) para la función,y observamos que:

, sustituyendo en la ecuación de Laplace obtenemos:


por lo tanto

No, es su análogo

Elaboro --Ricardo Garcia Hernandez (discusión) 23:40 2 jun 2015 (CDT)


Ejercicio 20

Construya un ejemplo acompañado de una breve explicación, que iluste el siguiente hecho: si $v$ es armónica conjugada de $u$ en algún dominio $D$, entonces $u$, en general, no es armónica conjugada de $v$.

Solución:

Sea $f(z) = z^2 = x^2 - y^2 +2ixy$


Si $f(z) = u(x,y) + iv(x,y)$ De donde $u = x^2 - y^2$ y $v = 2xy$


La función armónica conjugada satisface las ecuaciones de Cauchy-Riemman, esto es,


$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$; Haciendo las cuentas llegamos a $2x = 2x$


y $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$; Después de los cálculos vemos que $-2y = -2y$


De aquí vemos que $f(z) = u(x,y) + iv(x,y)$ es analítica en un domino $D$


Ahora si $v$ es la función de la que partimos y $u$ es la armónica conjugada de $v$, ¿se cumplen las ecuaciones de Cauchy-Riemman?


$\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}$; vemos que $2y \neq -2y$


y $\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x}$; y de aquí $2x \neq -2x$


Podemos notar que $f(z) = v(x,y) + iu(x,y)$ no es analítica en el dominio D, pues no cumple con las ecuaciones de Cauchy-Riemman.


Por lo tanto $u$ no es armónica conjugada de $v$.

Observación: nótese que $-u$ sí es armónica conjugada de $v$, y esto es en general.

--Arnold B. Herrera Rubert (discusión) 17:11 7 jun 2015 (CDT)



Ejercicio 21

21.-

21.-

Si $f\left(z\right)=u\left(x,y\right)+iv\left(x,y\right)$es una funcion analítica en el dominio $D$ y $f\left(z\right)\neq0$ para toda$z$ en $D$

mostrar que $\phi\left(x,y\right)=\log_{e}\left|f\left(z\right)\right|$es harmónica en $D$

Como $\phi\left(x,y\right)=\log_{e}\left|f\left(z\right)\right|=\log_{e}\left|u\left(x,y\right)+iv\left(x,y\right)\right|=\log_{e}\sqrt{u^{2}+v^{2}}+i\arctan\left(\frac{v}{u}\right)$

Donde

$U=\log_{e}\sqrt{u^{2}+v^{2}}$

y $V=\arctan\left(\frac{v}{u}\right)$

Entonces para que la función $\phi$ sea armónica deben cumplirse las siguientes dos condiciones:

$\frac{\partial^{2}U}{\partial x^{2}}+\frac{\partial^{2}U}{\partial y^{2}}=0$...$\left(1\right)$

$\frac{\partial^{2}V}{\partial x^{2}}+\frac{\partial^{2}V}{\partial y^{2}}=0$...$\left(2\right)$

De la ecuación $\left(1\right)$se calcula:

$\frac{\partial U}{\partial x}=$$\frac{1}{\sqrt{u^{2}+v^{2}}}.\left(-\frac{2u.\frac{\partial u}{\partial x}+2v\frac{\partial v}{\partial y}}{\left(u^{2}+v^{2}\right)^{\frac{3}{2}}}\right)$ $\frac{\partial^{2}U}{\partial x^{2}}=$$-\frac{1}{\sqrt{u^{2}+v^{2}}}.$$\left\{ 2u.\frac{\partial u}{\partial x}+2v\frac{\partial v}{\partial y}.-\frac{3}{2}\left(u^{2}+v^{2}\right)^{-\frac{5}{2}}+\left(u^{2}+v^{2}\right)^{\frac{3}{2}}.2\left[\left(\frac{\partial u}{\partial x}\right)^{2}+u\frac{\partial^{2}u}{\partial x^{2}}\right]\right\} $


--Alejandro Juárez Toribio (discusión) 17:31 7 jun 2015 (CDT)