Diferencia entre revisiones de «Compleja:Zill-Cap1.1»

De luz-wiki
Línea 374: Línea 374:
=== Ejercicio 11 ===
=== Ejercicio 11 ===


Escribe el numero dado en la forma $a+ib$.
'''Escribe el numero dado en la forma $a+ib$.'''


:<math>\dfrac{(2-4i)}{(3+5i)}</math>
''':<math>\dfrac{(2-4i)}{(3+5i)}</math>'''
 
'''Procedimiento'''


Para resolver este problema multiplicaremos el numerador y el denominador por el conjugado de $3-5i$ del denominador $3+5i$ y al realizar las operaciones correspondientes obtendríamos:  
Para resolver este problema multiplicaremos el numerador y el denominador por el conjugado de $3-5i$ del denominador $3+5i$ y al realizar las operaciones correspondientes obtendríamos:  
Línea 385: Línea 387:


:<math>\dfrac{(2-4i)}{(3+5i)} = -\frac{7}{17}-\frac{11}{17}i</math>
:<math>\dfrac{(2-4i)}{(3+5i)} = -\frac{7}{17}-\frac{11}{17}i</math>
'''Solución'''
-\frac{7}{17}-\frac{11}{17i}


[[Usuario:Miguel Medina Armendariz|Miguel Medina Armendariz]] ([[Usuario discusión:Miguel Medina Armendariz|discusión]]) 11:07 15 mayo 2015 (CDT)
[[Usuario:Miguel Medina Armendariz|Miguel Medina Armendariz]] ([[Usuario discusión:Miguel Medina Armendariz|discusión]]) 11:07 15 mayo 2015 (CDT)

Revisión del 15:08 20 dic 2021


Ejercicios del capítulo 1 Números complejos y el plano complejo, sección 1 Números complejos y sus propiedades del libro, A First Course in Complex Analysis with Applications de Zill y Shanahan.

Clasificación CL: QA331.7 .Z55 2003 [1].


Sección 1.1

Ejercicio 1

1. Evalué las siguientes potencias de i.

(a) $i^{8}$

(b) $i^{11}$

(c) $i^{42}$

(d) $i^{105}$

Procedimiento

A partir de la definición $i^{2}=-1$, se pueden obtener las primeras potencias de $i$

$i=i$

$i^{2}=-1$

$i^{3}=-i$

$i^{4}=1$

$i^{5}=i$

$i^{6}=-1$

$i^{7}=-i$

$i^{8}=1$

De aquí se observa que existe una sucesión en los resultados de estas potencias, además $i^{4k}=1$, para cualquier $k=1,2,3,4,...$ .

Se deduce entonces que:

\begin{equation} i^{n}=i^{4k+b}=i^{b} \end{equation}


Empleando esta fórmula de obtiene que:

(a) $i^{8}=i^{4(2)+0}=i^{0}=1$

(b) $i^{11}=i^{4(2)+3}=i^{3}=-i$


(c) $i^{42}=i^{4(10)+2}=i^{2}=-1$


(d) $i^{105}=i^{4(26)+1}=i^{1}=i$

Solución 

(a) $i^{8}=i^{4(2)+0}=i^{0}=1$

(b) $i^{11}=i^{4(2)+3}=i^{3}=-i$

(c) $i^{42}=i^{4(10)+2}=i^{2}=-1$

(d) $i^{105}=i^{4(26)+1}=i^{1}=i$


Realizado por: Luis Santos (discusión) 14:58 12 mayo 2015 (CDT) Carlosmiranda (discusión) 15:43 21 nov 2020 (CST)


Ejercicio 2

Escriba el numero dado, en la forma .

(a) $2i^{3}-3i^{2}+5i$.

Procedimiento

Aquí lo más práctico es factorizar una $i^{2}$ en el primer término y aplicar nuestra definición de $i^{2}$= $-1$ y aplicar la misma definición en el segundo término, desarrollamos y simplificamos:

$2i(i^{2})-3(i^{2})+5i=2i(-1)-3(-1)+5i=-2i+3+5i=3+3i$.

Solución 

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle (a) 3+ i3 } .


(b) $3i^{5}-i^{4}+7i^{3}-10i^{2}-9$.

Procedimiento

Son potencias pequeñas, para hacer mas evidente todo, lo reescribiré de la siguiente forma que es equivalente:

$3i(i^{2})(i^{2})-(i^{2})(i^{2})+7i(i^{2})-10(i^{2})-9$

sustituimos $(i^{2})=-1$, desarrollamos y simplificamos:

.

Solución 

(b)


(c) $\frac{5}{i}+\frac{2}{i^{3}}-\frac{20}{i^{18}}$.

Procedimiento

Tomamos en cuenta que $i^{18}=-1$; $i^{3}=-i$ y reescribimos todo:

$\frac{5}{i}-\frac{2}{i}+20$.

multiplicamos por el 1 que nos convenga:

$\left(\frac{5}{i}\right)\left(\frac{i}{i}\right)-\left(\frac{2}{i}\right)\left(\frac{i}{i}\right)+20\left(\frac{i}{i}\right)=\frac{5i}{i^{2}}-\frac{2i}{i^{2}}+20$.

volvemos a tomar en cuenta $(i^{2})=-1$.

$-5i+2i+20$.

y simplificamos:

$20-3i$.

Solución

(c) $ 20-i3 $


(d) $2i^{6}+\left(\frac{2}{-i}\right)^{3}+5i^{-5}-12i$.

Tomamos en cuenta que $i^{6}=-1$,$\left(-i\right)^{3}=-i$ y $i^{5}=i$ y reescribimos:

$-2-\frac{8}{i}+\frac{5}{i}-12i$

multiplicamos por el 1 que nos convenga, desarrollamos y simplificamos:

$-2-\left(\frac{8}{i}\right)\left(\frac{i}{i}\right)+\left(\frac{5}{i}\right)\left(\frac{i}{i}\right)-12i$ = $-2+8i-5i-12i$=$-2-9i$

Solución 

(d)$ -2-i9$


Realizado por: Juan Daniel Rivera Bautista (discusión) 11:43 15 mayo 2015 (CDT)

Oscar Javier Gutierrez Varela (discusión) 21:22 15 mayo 2015 (CDT)

Carlosmiranda (discusión) 16:21 21 nov 2020 (CST)


Ejercicio 3

Escribir el numero complejo de la forma a+ib

$\left(5-9i\right)+\left(2-4i\right)$

Procedimiento

Tenemos los números complejos:

$z_{1}=5-9i$ , $z_{2}=2-4i$

Sumamos parte real con parte real

$5+2=7$

y parte imaginaria con parte imaginaria

$(-9-4)i=-13i$

Y así tenemos el resultado:

Solución

$z_{1}+z_{2}=7-i13$


Resuelto por: Luis Enrique Martínez Valverde (discusión) 17:11 15 mayo 2015 (CDT) Carlosmiranda (discusión) 16:22 21 nov 2020 (CST)


Ejercicio 4

Escribir el número $3\left(4-i\right)-3\left(5+2i\right)$ en la forma .

Procedimiento

Tenemos los números complejos:

$z_{1}=3\left(4-i\right)$ , $z_{2}=-3\left(5+2i\right)$

Primero la operación producto por escalar de cada número complejo:

$z_{1}=3\left(4-i\right)=12-3i$

$z_{2}=-3\left(5+2i\right)=-15-6i$

Ahora uniendo términos semejantes seguido de la operación sustracción, tenemos:

$3\left(4-i\right)-3\left(5+2i\right)= 12-3i-15-6i =\left(12-15\right)-\left(6+3\right)i= -3-9i$

Solución 

$-3-i9$


Realizado por: Emmanuell Castro Flores (discusión) 19:50 15 mayo 2015 (CDT)


Ejercicio 5

Escribir el número dado en la forma a + ib .

$z=i(5+7i)$

Procedimiento

Tenemos el numero complejo:

\[ i(5+7i) \]


entonces usamos la propiedad distributiva para el producto y la suma:

\[ (5i+7i^{2}) \]


y sabiendo de la definición que: \[ i^{2}=-1 \]


tenemos que el numero complejo resultante es:

\[ (5i-7) \]


representándolo en la forma:

\[ z=a+bi \]

El resultado es:

Resultado

$-7+i5$



Ejercicio resuelto por: --Usuario:Martin Flores Molina (discusión) 22:48 14 mayo 2015 (CDT) Angelina Nohemi Mendoza Tavera (discusión) 21:22 15 mayo 2015 (CDT) Carlosmiranda (discusión) 16:28 21 nov 2020 (CST)


Ejercicio 6

Escriba el numero dado, en la forma

$i(4-i)+4i(1+2i)$

Procedimiento

Únicamente operamos y resolvemos:

$i(4-i)+4i(1+2i)=4i-i^2+4i+8i^2=(1-8)+i(4+4)=-7+i8$

Solución

$-7+i8$

--Fernando Vazquez V. (discusión) 00:08 15 mayo 2015 (CDT) Carlosmiranda (discusión) 16:32 21 nov 2020 (CST)


Ejercicio 7

Escribir de la forma $(a+bi)$

$(2-3i)(4+i)$

Procedimiento 

Así que desarrollando: $(2-3i)(4+i)=8-3(-1)-12i+2i=11-10i$

Además, por la definición de multiplicación entre números complejo se tiene que:$(a+bi)(c+di)=(ac-bd)+i(bc+ad)$

Entonces:

\[ (2-3i)(4+i)=(8+3)+i(2-12)=11-i10 \]

Solución

$11-i10$


Resuelto por --A. Martín R. Rabelo (discusión) 21:20 12 mayo 2015 (CDT)

Comentario: Uso de la forma polarel resultado puede ser mas directo y permite observarse el fenómeno de rotación en el plano complejo si utilizamos su forma polar tal que La multiplicación de dos números complejos(2-3i)(4+i)=(8+3)+i(2-12)=11-10i es otro número complejo tal que:

Su módulo es el producto de los módulos.

$\alpha_4$ Su argumento es la suma de los argumentos

\[ r1 \alpha * r2 \alpha = r1 r2 (\alpha +\alpha)\]


Ejercicio 8

Escribir el numero dado de la forma .

$\left( \frac{1}{2}-\frac{1i}{4}\right) \left( \frac{2}{3}+\frac{5i}{3}\right)$
Procedimiento

Realizando el producto se tiene::

Sabemos que: $i^{2}=-1$

Y además $(a+bi)(c+di)=(ac-bd)+i(bc+ad)$

Por lo tanto: $\left( \frac{1}{2}-\frac{1i}{4}\right) \left( \frac{2}{3}+\frac{5i}{3}\right) = \frac{3}{4}+\frac{2i}{3}$

Solución

$ \frac{3}{4}+\frac{2i}{3} $


Realizado por: Nancy Martínez Durán (discusión) 15:05 14 mayo 2015 (CDT)

Carlosmiranda (discusión) 19:11 21 nov 2020 (CST)


Ejercicio 10

Escribir el numero dado de la forma $a+ib$.

Procedimiento
$\frac{i}{1+i}$

Multiplicando y dividiendo por el conjugado del denominador se tiene:

$\frac{i}{1+i}\cdot\frac{1-i}{1-i}$

Se realizan las operaciones correspondientes.

$\frac{i(1-i)}{(1+i)(1-i)}=\frac{i-i^{2}}{1-i+i-i^{2}}=\frac{i+1}{1+0+1}=\frac{1}{2}+i\cdot\frac{1}{2}$
Solución

$\frac{1}{2}+\frac{i}{2}$


Realizado por: Tlacaelel Cruz (discusión) 20:46 12 mayo 2015 (CDT)

Carlosmiranda (discusión) 19:31 21 nov 2020 (CST)


Ejercicio 11

Escribe el numero dado en la forma $a+ib$.

:

Procedimiento

Para resolver este problema multiplicaremos el numerador y el denominador por el conjugado de $3-5i$ del denominador $3+5i$ y al realizar las operaciones correspondientes obtendríamos:

donde $i^2=-1$

De manera que buscamos la forma $a+bi$, reescribimos el ultimo resultado de tal manera que nos quede:

Solución

-\frac{7}{17}-\frac{11}{17i}

Miguel Medina Armendariz (discusión) 11:07 15 mayo 2015 (CDT)


Ejercicio 12

Escriba el numero complejo $z$ en la forma $a+ib$

Como tenemos una división $z_1/z_2$ para resolverla es necesario multiplicar a $z$ por el conjugado del denominador, al hacer esto deberán de hacer las operaciones correspondientes

Reduciendo términos semejantes obtenemos:

Angelina Nohemi Mendoza Tavera (discusión) 15:00 14 mayo 2015 (CDT)



Ejercicio 13

Escriba la operación en la forma $a+ib$.

$(1+i)^{2}(1-i)^{3}$

esto podemos representarlo como:

$(1+i)^{2}(1-i)^{3}$=$(1+i)^{2}(1-i)^{2}(1-i)$

además:

$(1+i)^{2}(1-i)^{2}$=$[(1+i)(1-i)]^{2}$

así:

$(1+i)^{2}(1-i)^{2}(1-i)=[(1+i)(1-i)]^{2}(1-i)=(1+1)^2(1-i)=2^{2}(1-i)=4-4i$

--Francisco Medina Albino (discusión) 14:37 14 mayo 2015 (CDT) Carlosmiranda (discusión) 19:42 21 nov 2020 (CST)


Ejercicio 14

Escribir el número dado en la forma Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): a + ib .

Desarrollamos los productos:

Tomando en cuenta queError al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): i^{2} = -1 .

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): = \frac{3-i}{11-2i}

Multiplicando por el conjugado $\bar{z}$.

Por lo tanto expresando en la forma Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): a + ib .


Resuelto por --Severo Martinez Samantha B. (discusión) 21:05 15 mayo 2015 (CDT) Carlosmiranda (discusión) 19:49 21 nov 2020 (CST)


Ejercicio 15

Escribe el numero dado en la forma $(a+bi)$

para poder solucionar este problema lo primero que debemos realizar son las sumas y las restas de los parentesis teniendo encuenta que se suman partes reales con reales y partes imaginarias con imaginarias asi tendremos:

el siguiente paso consiste en multiplicar y dividir por el conjugado del denominador asi:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): (\frac{2-11i}{6-i})(\frac{6+i}{6+i})

una vez realizando la multiplicacion obtendremos:

y dividiendo ambos terminos por 37 obtendremos el numero de la forma $(a+bi)$ esto es:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{(5-4i)-(3+7i)}{(4+2i)+(2-3i)}=(\frac{33}{37})-(\frac{64}{37})i

Resuelto por --Cristian Alfredo Ruiz Castro (discusión) 19:05 14 mayo 2015 (CDT)


Ejercicio 20

Escriba el numero dado, en la forma .

$(2+3i)(\dfrac{2-i}{1+2i})^2$

Desarrollando el término cuadrático tenemos que.

$(2+3i)(\dfrac{4-4i+i^2}{1+4i+4i^2})$

Pero tomando en cuenta que $i^2=1$, entonces:

$(2+3i)(\dfrac{3-4i}{-3+4i})= (2+3i)(\dfrac{3-4i}{-(3-4i)})= (2+3i)(-1)$

Por lo tanto llegamos a:

$(2+3i)(\dfrac{2-i}{1+2i})^2 = -2-3i$

--Arnold B. Herrera Rubert (discusión) 20:15 15 mayo 2015 (CDT) Carlosmiranda (discusión) 19:56 21 nov 2020 (CST)


Ejercicio 26

En el problema, encontrar Re(z) e Im(z).

$z=\frac{1}{(1+i)(1-2i)(1+3i)}$

Solución:

Simplificamos la expresión dada:

$\frac{1}{(1+i)(1-2i)(1+3i)}=\frac{1}{(1-2i+i-2i^{2})(1+3i)}=\frac{1}{(3-i)(1+3i)}=\frac{1}{(3+9i-i-3i^{2})}=\frac{1}{6+8i}$

Ahora multiplicamos este último resultado por $\bar{z}$ (cociente de conjugados de ${z}$) . Así tenemos:

$z.(\bar{z}/\bar{z})=(\frac{1}{6+8i})(\frac{6-8i}{6-8i})=\frac{6\text{-}8i}{36-48i+48i-64i^{2}}=\frac{6-8i}{100}=\frac{3}{50}-\frac{2}{25}i$

Por lo que:

$Re(z)=\frac{3}{50}$; $Im(z)=-\frac{2}{25}i$

Resuelto por: Alejandro Juárez Toribio Alejandro Juárez Toribio (discusión) 16:42 13 mayo 2015 (CDT) Carlosmiranda (discusión) 20:00 21 nov 2020 (CST)


Ejercicio 27

Sea . Exprese la cantidad dada en términos de e

Re

Donde se define como el inverso del número : \[ \dfrac{1}{z} = \dfrac{1}{x+ i y}\]

\[ \dfrac{1}{z} = \dfrac{1}{x+ i y}\dfrac{x - i y}{x- i y} = \dfrac{x + i y }{x^{2} + y^{2}} \]

Si $Re >0$ y $x>0$ esto resulta: \[ \dfrac{x}{x^{2} + y^{2}} \]

--Esther Sarai (discusión) 00:32 15 mayo 2015 (CDT) Esther Sarai Carlosmiranda (discusión) 20:20 21 nov 2020 (CST)

Ejercicio 35

Problema 35 de 1.1 (Zill). Demostrar que el número complejo dado cumple la condición y encuentra otro número que la cumpla $z_2$:

$z^2 + i = 0$; $z_1 = -\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{2}}{2}i$

Resolvemos la ecuación:


$z_1^2=z_1 z_1 = (-\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{2}}{2}i)(-\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{2}}{2}i)=\dfrac{2}{4}-\dfrac{2}{4}i-\dfrac{2}{4}i-\dfrac{2}{4}$

$z_1^2=(\dfrac{2}{4}-\dfrac{2}{4})-(\dfrac{2}{4}+\dfrac{2}{4})i=-i$

Sustituimos:

$z_1^2+i=-i+i=0$

Por lo que cumple la condición. Otro número que cumple la misma condición podría ser el obtenido con un cambio de signo entre su parte $Re(z_1)$ e $Im(z_1)$:

$z_2=\frac{\sqrt{2}}{4}-\dfrac{\sqrt{2}}{4}i$

Resolvemos la ecuación para $z_2$;

$z_2^2=z_2z_2=(\dfrac{\sqrt{2}}{2}-\dfrac{2}{2}i)(\dfrac{\sqrt{2}}{2}-\dfrac{2}{2}i)=\dfrac{2}{4}-\dfrac{2}{4}i-\dfrac{2}{4}i-\dfrac{2}{4}$

$z_2^2=(\dfrac{2}{4}-\dfrac{2}{4})-(\dfrac{2}{4}+\dfrac{2}{4})i=-i$

Sustituimos:

$z_2^2+i=-i+i=0$

Por lo que el número $z_2=\dfrac{\sqrt{2}}{2}-\dfrac{\sqrt{2}}{2}i$ cumple también la condición $z^2+i=0$.

Ejercicio resuelto por: --Oscar Javier Gutierrez Varela (discusión) 19:43 12 mayo 2015 (CDT)

Nota adicional:

Siendo $z=a+ib$

$z^{2}$ puede obtenerse al desarrollar $(a+ib)^{2}=a^{2}+2iab-b^{2}=(a^{2}-b^{2})+2abi$

Donde se empleo la definición $i^2 =-1$

De aquí puede observarse que

$z^{2}=(-z)^{2}$

Y ya que

$\frac{-\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$

es una solución

también lo sera:

$\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$

--Luis Santos (discusión) 22:12 12 mayo 2015 (CDT)


Ejercicio 37

Encontrar $z$ en la forma $z = a+bi$ tal que::

Por la definición de igualdad números complejos $z_1=z_2$ si y solo si $a_1=a_2$ y $b_1=b_2$

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): 2(a+ib)=i(2+9i)

Despejando para $a$ y $b$

Por lo tanto $z$ se puede expresar de la siguiente forma::

Carlosmiranda (discusión) 20:39 21 nov 2020 (CST)


Ejercicio 44

Resuelve el siguiente sistema de ecuaciones para y . Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \begin{vmatrix} i z_1 + (1+i) z_2 = 1+2i \\ (2-i)z_1 + 2i z_2 = 4i \end{vmatrix}

Solución. El determinante del sistema es:

Error al representar (error de sintaxis): {\displaystyle \begin{vmatrix} i & (1+i) \\ (2-i) & 2i \end{vmatrix}= 2i² -[(2-i)(1+i)]=-2-[2+2i-i-i²]=-2-[3+i]=-(5+i).}

Por lo cual al conocer los valores del determinante procedemos a calcular los valores de nuestras variables de la siguiente manera:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle z_1=\frac{ \begin{vmatrix} (1 + 2 i) & (1 + i) \\ 4 i & 2 i \end{vmatrix}}{-(5 + i)} = \frac{ 2 i (1 + 2 i)-4 i (1 + i)} {-(5 + i)}=\frac{2i+4i²-4i-4i²}{-(5+i)}=\frac{ 4 i }{5 + i}=\frac{ 4 i }{5 + i}\frac{5-i}{5-i}=\frac{20i-4i²}{5²+1²}=\frac{ 20 i + 4 }{26}}


Error al representar (error de sintaxis): {\displaystyle z_2=\frac{ \begin{vmatrix} i & (1 + 2 i) \\ (2 - i) & 4 i \end{vmatrix}}{-(5 + i)} = \frac{ 4 i²-[(2 - i)(1 + 2 i)]} {-(5 + i)}=\frac{-4-[2+4i-i-2i²]}{-(5+i)}=\frac{ 8 + 3 i }{5 + i}=\frac{ 8 + 3 i }{5 + i}\frac{5-i}{5-i}=\frac{40+30i-3i²}{5²+1²}=\frac{ 43 + 30 i}{26}}

--Anahi Limas (discusión) 20:21 14 mayo 2015 (CDT) Carlosmiranda (discusión) 22:53 21 nov 2020 (CST)


Ejercicio 45

¿Qué se puede decir sobre el numero complejo $z$ si $z=\overline{z}$?, y ¿si $(z)^{2}=(\overline{z})^{2}$?

Considerando $z=a+ib$, por definicion su conjugado es $\overline{z}$, analizándolo desde el plano complejo, considerando a la parte real como el eje x y a la parte imaginaria como el eje y, $z$ seria una reflexión respecto al eje x. Por otro parte para que la primer condición dada se cumpla se necesita lo siguiente: \[ z=\overline{z}\Leftrightarrow z\in\mathbb{R} \]

O mejor dicho $z=\overline{z}\Leftrightarrow z=a+i0$

Es decir, un numero complejo es igual a su conjugado si y solo si la parte imaginaria del conjugado es igual a cero, lo que quiere decir que solo es un número real.

Para el segundo caso

\[ (z)^{2}=(\overline{z})^{2}\Leftrightarrow z=a+i0 \]


Desarrollando ambos lados de la ecuación, tenemos lo siguiente:

\[ (a^{2}-b^{2})+i(2ba)=(a^{2}+b^{2})-i(2ba) \]


La ecuación anterior solo es valida si $b=0\Rightarrow z=a+i0$, lo que implica que tiene que ser un número real.

Jose Emmanuel Flores Calderón (discusión) 20:38 14 mayo 2015 (CDT) Carlosmiranda (discusión) 22:57 21 nov 2020 (CST)


Ejercicio 49

Asumiendo por el momento que tiene sentido en el sistema de números complejos. ¿Cómo demostraría la validez de la ecuación Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \sqrt{1+i}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{2}}+i\sqrt{-\frac{1}{2}+\frac{1}{2}\sqrt{2}}  ?

Solución

Tenemos que ; sólo tiene sentido sí Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \left(\sqrt{1+i}\right)^{2}=1+i .

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle 1+i=\left(\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{2}}+i\sqrt{-\frac{1}{2}+\frac{1}{2}\sqrt{2}}\right)^{2}. }

Desarrollamos el binomio cuadrado:

Simplificamos y eliminamos términos:

Por lo tanto

Elaborado por --Ricardo Garcia Hernandez (discusión) 17:50 15 mayo 2015 (CDT) Carlosmiranda (discusión) 23:02 21 nov 2020 (CST)


Ejercicio 50

Suponiendo que , que podemos decir acerca de , sí

Primero desarrollaremos la multiplicación de los números

Pero la multiplicación de ambos números complejos es igual a cero::

Siendo .

Ahora como tenemos una igual .

Esto pasa sí y sólo sí la parte real es igual a parte real e imaginaria con imaginaria, observamos que tenemos un sistema de ecuaciones::

Por lo que::

Primero desarrollando en

Vemos que::

Por lo que debe ser:

Ahora sí sustituimos en

Por lo que de los valores obtenidos, sí sustituimos en cualquier número Error al representar (error de sintaxis): z_{0} ó z_{1} , tenemos que::

ó

Por lo anterior, Podemos decir que:

1.

2.

3.


--Pablo (discusión) 23:45 14 mayo 2015 (CDT)

Carlosmiranda (discusión) 23:36 21 nov 2020 (CST)


Ejercicio 51

Suponga que el producto $z_1\cdot z_2$ de dos números complejos es una constante real, y además diferente de cero. Mostrar que $z_2=k{\bar{z}}_1$, donde $k$ es un número real.\\ Solución: Sea $z_1z_2=\alpha$; con ($\alpha\in\mathbb{R}-\{0\}$).Como $z_1z_2\neq 0 \Longrightarrow (z_1\neq0 \wedge z_2\neq0) $

Entonces:

$z_1z_2=\alpha\Longrightarrow {z_1}^{-1}(z_1z_2)={z_1}^{-1}(\alpha)\Longrightarrow ({z_1}^{-1}z_1)z_2={z_1}^{-1}\alpha \Longrightarrow z_2=\frac{\alpha}{z_1} \Longrightarrow z_2=\frac{\alpha}{z_1}\frac{\bar{z}_1}{\bar{z}_1} \Longrightarrow z_2=\frac{\alpha\bar{z}_1}{{\mid z_1 \mid}^2} $

Si $ k\equiv \frac{\alpha}{{\mid z_1 \mid}^2}$ entonces $ k \in\mathbb{R}$, ya que $(\alpha\in\mathbb{R}-\{0\})\wedge ({\mid z_1 \mid}^2\in\mathbb{R}-\{0\})$.

Por lo tanto: $ z_2=k{\bar{z}}_1 $

Alan Daniel Barrón Posadas (discusión) 23:27 15 mayo 2015 (CDT) Carlosmiranda (discusión) 23:44 21 nov 2020 (CST)