Skip to main content
Home
luz

Main navigation

  • Home
  • research
  • scators
  • optics
  • ciencia
  • arsciencia

Breadcrumb

  1. Home
  2. scators
  3. fractals
  4. hun
  5. hun: parameter space

hun: 2D parameter space

Profile picture for user mfg
By mfg, 9 November, 2017

To start the visualization, we should study s-x plane's sections for a constant value along hyper-axis "y". This set it's labeled as  $c2i0 \mathbb{E}_{+}^{1+2}$, it means that $\overset { o }{ \varphi  }  _{ 0 } $ remains fixed and the parameter $\overset { o }{ c }=({ c }_{ 0 };{ c }_{ 1 },{ c }_{ 2 }) $ is varied. However is important that ${ c }_{ 2 }$ have a non-zero value, because this condition allows us see the fractal behavior. 

c2i03(-1.77287;x,y)
c2i0E1+2(-1.77287;x,y)

 

 

English

Book traversal links for hun: 2D parĂ¡metros

  • hun: parameter programme
  • Up
  • hun: 3D parameter space

Book navigation

  • fractals
    • quadratic mapping
    • visualization
    • puerta de entrada
    • hun
      • hun: parameter space
        • hun: parameter programme
        • hun: 2D parameter space
        • hun: 3D parameter space
      • hun: dyncamical space
    • ix
  • real scator algebra
  • imaginary scator algebra
Canal RSS

Language switcher

  • Spanish
  • English

User account menu

  • Log in
Powered by Drupal