Skip to main content
Home
luz

Main navigation

  • Home
  • research
  • scators
  • optics
  • ciencia
  • arsciencia

Breadcrumb

  1. Home
  2. scators
  3. fractals
  4. hun

hun: parameter space

Profile picture for user mfg
By mfg, 7 November, 2017

In the parameter space , both imaginary and real, the initial point is always in the origin. The first iteration corresponds to the point that is being evaluated (see quadratic mapping).

In the images below, the complete bound real scator set under the quadratic iteration in 1+2 dimensions is depicted, it's labeled as $c2i0 \mathbb{E}_{+}^{1+2}$.

dina2
Parameter space 1+1 dimension

The rendering was performed with the fantastic programme   Mandelbulber v.2.07  modified accordingly to cope with scator algebra. The file modifications are described in the following link: hun: parameter  programme .

In this case, the images are obtained by means of planes s, x, along "y" axis. In the previous image conforming it moves along the "y" hyper-axis, you can observe different behavior.

scasi
Zoom to the left partof the first image c2i0E1+2 (s;x,10^-17), which presents an self-replication structure.

 

English
  • hun: parameter programme
  • hun: 2D parameter space
  • hun: 3D parameter space

Book traversal links for hun: espacio de parĂ¡metros

  • hun
  • Up
  • hun: parameter programme

Book navigation

  • fractals
    • quadratic mapping
    • visualization
    • puerta de entrada
    • hun
      • hun: parameter space
        • hun: parameter programme
        • hun: 2D parameter space
        • hun: 3D parameter space
      • hun: dyncamical space
    • ix
  • real scator algebra
  • imaginary scator algebra
Canal RSS

Language switcher

  • Spanish
  • English

User account menu

  • Log in
Powered by Drupal