Diferencia entre revisiones de «Compleja:z-ej-cap1.2»

De luz-wiki
Sin resumen de edición
Sin resumen de edición
(No se muestran 16 ediciones intermedias de 5 usuarios)
Línea 1: Línea 1:
==Sucesiones y series de números complejos==
==Sucesiones y series de números complejos==


1.29) '''Si <math>{z_n}</math> es una sucesión convergente en <math>\mathbb{C}</math>, demuestre que su límite es único. Si <math>z_{n}</math> y<math>w_{n}</math> son dos sucesiones convergentes, con límites <math>L_{1} y L_{2}</math>, respectivamente, demuestre que:
:1)La suma de las sucesiones <math>{a_n}+b_{n}</math> converge a <math>L_{1}+L_{2}</math>
:2)El producto de las sucesiones <math>{a_n}b_{n}</math>converge a <math>L_{1}L_{2}</math>
:3)El cociente (cuando está definido) de las sucesiones <math> \frac{a_{n}}{b_{n}}</math> converge a <math> \frac{L_{1}}{L_{2}} si L_{2}\ne0</math>


'''Demostración'''


:'''Primero demostraremos que el límite es único'''.
''1.32 Si <math>\boldsymbol{\Omega}\subseteq\mathbb{C}</math> demuestre que<math>\boldsymbol{\Omega}^- =\{Z \in \mathfrak{C}: Z \}</math>es un punto de acumulación de <math>\boldsymbol{\Omega}</math>.''
::Supongamos que la sucesión <math>(a_{n})_{n}</math> tuviera dos límites distintos, digamos <math>a\neq b</math>


:::Sea <math>\epsilon ={\frac{|a-b|}{4}}</math>>0. Entonces, por definición, existen números naturales <math>n_{1} y n_{2}</math> tales que <math>|a-a_{n}|<\epsilon </math> si <math>n>n_{1}</math> y <math>|b-b_{n}|<\epsilon </math> si <math>n>n_{2}</math>.
:::Llamando <math>n_{0}=máx\{n_{1},n_{2}\}</math> se debe cumplir que:
<math>|a-a_{n}|<\epsilon </math> si <math>n>n_{0}</math> y <math>|b-b_{n}|<\epsilon
</math> si <math>n>n_{0}</math>. De donde se deduce que si n>n_{0} ha de ser
:::<math>|a-b|=|(a+b)-(a_{n}+b_{n})|\leq |a-a_{n}|+|b-b_{n}| = \epsilon +\epsilon =2{\frac{|a-b|}{4}}={\frac{|a-b|}{2}}</math>
:::<math>\therefore 1<{\frac{1}{2}}</math> es una contradicción, entonces '''el límite es único.'''


''Un punto <math>\mathcal{Z}_0</math> se dice que es un punto de acumulación <math>\boldsymbol{\Omega}</math>, si al menos alrededor de <math>\mathcal{Z}_0</math> contiene un punto  <math>\mathcal{Z}</math>. Entonces si <math>\boldsymbol{\Omega}^-</math>, este contiene todos sus puntos de acumulación ''


'''1)'''Sea <math>\epsilon>0</math>, existen enteros positivos <math>n_{1} </math> y <math>n_{2}</math> tales que
<math>|a-a_{n}|<{\frac{\epsilon}{2}} </math> si <math> n>n_{1}</math> y <math>|b-b_{n}|<{\frac{\epsilon}{2}} </math> si <math>n>n_{2}</math>.
:Tomando <math>n_{0}=máx\{n_{1},n_{2}\}</math> se tiene:


::<math>|(a+b)-(a_{n}+b_{n})|\leq |a-a_{n}|+|b-b_{n}| \leq {\frac{\epsilon}{2}}+{\frac{\epsilon}{2}} = \epsilon</math> para cada <math>n>n_{0}</math>
''Ayudandonos del lema 1.12''


::<math>\therefore a+b=lím_{n}(a_{n}+b_{n})</math>


''si <math>\boldsymbol{\Omega}\subseteq\mathfrak{C}</math>, un punto de acumulción de <math>\boldsymbol{\Omega}</math> si y sólo sí existe una sucesión<math>\{\mathcal{Z}_n\}\subseteq\boldsymbol{\Omega}-\{\mathcal{Z}\}</math>, tal que''


'''2)''' Sea <math>a_{n}</math> una sucesión convergente, entonces existe un <math>\alpha>0</math> t.q. <math>|a_{n}|<\alpha </math> <math>\forall n \in\mathbb{N}</math>
::Entonces
::<math>|ab-a_{n}b_{n}|= |ab-a_{n}b+a_{n}b-a_{n}b_{n})|
= |(a-a_{n})b+(b-b_{n})(a_{n})|
\leq |a-a_{n}||b|+|(b-b_{n})||a_{n}|
\leq |a-a_{n}||b|+|(b-b_{n})|\alpha</math>
::Sin embargo <math> a = lim_{n}a_{n} \textrm{  y  } b=lim_{n}b_{n} , \epsilon>0 \textrm{  existen  } n_{1},n_{2}\in \mathbb{N} \qquad</math> tal que
::<math>|a-a_{n}|<{\frac{\epsilon}{2(|b|+1)}} \textrm{ si  } n>n_{1} \qquad y \qquad |b-b_{n}|<{\frac{\epsilon}{2\alpha}} \textrm{ si  }n>n_{2}</math>


::Entonces
''<math>\mathcal{z}_0 = \lim\{\mathcal{Z}_n\}</math>.''
::<math>|ab-a_{n}b_{n}|< \frac{\epsilon}{2(|b|)} + \frac{\epsilon \alpha}{2\alpha} = \epsilon</math>


::tomando <math>n_{0}= máx\{n_{1},n_{2}\}</math> se tiene que <math> ab = lím_{n}(a_{n}b_{n}) </math>


''Una sucesión convergente tiene exactamente un punto límite, su límite''


'''3)'''Consideremos una cota inferior para la sucesión <math>(b_{n})_{n}</math> en lugar de una acotación superior.
::Puesto que <math>b\neq</math> 0 y |<math>b|=lím_{n}|b_{n}|</math>, sea <math>\epsilon ={\frac{|b|}{2}}</math> existe <math>n_{1}\in \mathbb{N}</math> tal que <math>\\ \alpha:={\frac{|b|}{2}}<|b_{n}|</math>, para <math>n>n_{1}</math>.
::Si <math>n>n_{1}</math>, obtenemos:
:<math> \bigg|\frac{a}{b}- \frac{a_{n}}{b_{n}}\bigg| =  \frac{|ab_{n}-ba_{n}|}{|b||b_{n}|} = \frac{|ab_{n}-ab+ab-a_{n}b|}{|b||b_{n}|} \le \frac{|a||b_{n}-b|+|b||a-a_{n}|}{|b||b_{n}|} \le \frac{|a||b_{n}-b|+|b||a-a_{n}|}{|b|\alpha} </math>
:: Sea <math>\epsilon>0 \textrm{  existen  } n_{2},n_{3}\in \mathbb{N} \qquad</math>tal que:
:<math>|b-b_{n}|< \frac{\epsilon}{2(|\alpha|+1)}|b|\alpha \textrm{ si } n>n_{2} \textrm{  y  }|a-a_{n}|<\frac{\epsilon}{2|b|}|a|\alpha \textrm{ si } n>n_{3} </math>
::Si tomamos <math> n_{0}:=max\{n,n_{2},n_{3}\} </math> debe cumplirse que
: <math>\bigg|\frac{a}{b}- \frac{a_{n}}{b_{n}}\bigg| \le \frac{|a||b_{n}-b|+|b||a-a_{n}|}{|b|\alpha} < \frac{\epsilon}{2(|\alpha|+1)}|\alpha|+\frac{\epsilon}{2|b|}|b| < \epsilon</math>
::Para <math>n>n_{0}</math>
:<math> \lim_{n \rightarrow 00}\frac{a_{n}}{b_{n}} = \frac{a}{b} \qquad b_{n}\ne0 \textrm{ y } b\ne0</math>


--[[Usuario:Cecilia Carrizosa Muñoz|cecy]] ([[Usuario discusión:Cecilia Carrizosa Muñoz|discusión]]) 21:12 27 nov 2012 (CST)
''<math>\boldsymbol{\Omega}^-</math> si <math>\mathcal{Z}</math> es un punto de acumulación de <math>\boldsymbol{\Omega}</math>, y <math>\mathcal{Z}\in \boldsymbol{\Omega}</math>, por lo tanto <math>\mathcal{Z}\notin \left(\boldsymbol{C}-\boldsymbol{\Omega}\right).</math>''




''1.32 Si <math>\boldsymbol{\Omega}\subseteq\mathfrak{C}</math> demuestre que<math>\boldsymbol{\Omega}^- =\{Z \in \mathfrak{C}: Z \}</math>es un punto de acumulación de <math>\boldsymbol{\Omega}</math>.''
''Hay una bola <math>B\left(\mathcal{Z};\boldsymbol{\epsilon}\right)</math> centrado en <math>\mathcal{Z}</math>, y pasa que <math>\boldsymbol{\Omega}\cap\left(B\left(\mathcal{Z};\boldsymbol{\epsilon}\right)-\{\mathcal{Z}\}\right)\neq &Oslash;</math>.''




''Un punto <math>\mathcal{Z}_0</math> se dice que es un punto de acumulación <math>\boldsymbol{\Omega}</math>, si al menos alrededor de <math>\mathcal{Z}_0</math> contiene un punto  <math>\mathcal{Z}</math>. Entonces si <math>\boldsymbol{\Omega}^-</math>, este contiene todos sus puntos de acumulación ''
''Por el ejercicio 1.21, tenemos que <math>\mathcal{Z}\in \left(\boldsymbol{\Omega}-\{\mathcal{Z}\}\right)^-</math> , entonces si hay una sucesión <math>\{\mathcal{Z}_n\}\subseteq \boldsymbol{\Omega}-\{\mathcal{Z}\}</math>, tal que sea convergente, osea <math>\mathcal{Z}=\lim\{\mathcal{Z}_n\}</math>.''
 
--[[Usuario:Luis Antonio|Luis Antonio]] ([[Usuario discusión:Luis Antonio|discusión]]) 18:39 28 nov 2012 (CST)




''Ayudandonos del lema 1.12''
----
'''1.34 Demuestre que diámetro <math>di\acute{a}mA=di\acute{a}m\bar{A} </math>, para todo <math>A\subseteq\mathbb{C} </math>.
'''


sea <math>z=a+bi </math> y <math>w=c+di</math> con <math>z,w\subseteq A </math>


''si <math>\boldsymbol{\Omega}\subseteq\mathfrak{C}</math>, un punto de acumulción de <math>\boldsymbol{\Omega}</math> si y sólo sí existe una sucesión<math>\{\mathcal{Z}_n\}\subseteq\boldsymbol{\Omega}-\{\mathcal{Z}\}</math>, tal que''


<math>di\acute{a}mA:=sup\left\{ \mid z-w\mid;z,w\epsilon A\right\} </math>


''<math>\mathcal{z}_0 = \lim\{\mathcal{Z}_n\}</math>.''
<math>sup\left\{ \mid(a+bi)-(c+di)\mid\right\} </math>


<math>sup\left\{ \mid(a-c)+(b-d)i\mid\right\} </math>


''Una sucesión convergente tiene exactamente un punto límite, su límite''
<math>sup\left\{ \sqrt{(a-c)^{2}+(b-d)^{2}}\right\}  </math>


<math>sup\left\{ \sqrt{a^{2}-2ac+c^{2}+b^{2}-2bd+d^{2}}\right\} </math>


''<math>\boldsymbol{\Omega}^-</math> si <math>\mathcal{Z}</math> es un punto de acumulación de <math>\boldsymbol{\Omega}</math>, y <math>\mathcal{Z}\in \boldsymbol{\Omega}</math>, por lo tanto <math>\mathcal{Z}\notin \left(\boldsymbol{C}-\boldsymbol{\Omega}\right).</math>''
por otro lado


<math>di\acute{a}m\bar{A}:=\mid\overline{z-w}\mid=\mid\overline{z}-\overline{w}\mid </math>


''Hay una bola <math>B\left(\mathcal{Z};\boldsymbol{\epsilon}\right)</math> centrado en <math>\mathcal{Z}</math>, y pasa que <math>\boldsymbol{\Omega}\cap\left(B\left(\mathcal{Z};\boldsymbol{\epsilon}\right)-\{\mathcal{Z}\}\right)\neq &Oslash;</math>.''
<math>=sup\left\{ \mid(a-bi)-(c-di)\mid\right\} </math>


<math>=sup\left\{ \mid(a-c)+(d-b)i\mid\right\} </math>


''Por el ejercicio 1.21, tenemos que <math>\mathcal{Z}\in \left(\boldsymbol{\Omega}-\{\mathcal{Z}\}\right)^-</math> , entonces si hay una sucesión <math>\{\mathcal{Z}_n\}\subseteq \boldsymbol{\Omega}-\{\mathcal{Z}\}</math>, tal que sea convergente, osea <math>\mathcal{Z}=\lim\{\mathcal{Z}_n\}</math>.''
<math>=sup\left\{ \sqrt{(a-c)^{2}+(d-b)^{2}}\right\} </math>


--[[Usuario:Luis Antonio|Luis Antonio]] ([[Usuario discusión:Luis Antonio|discusión]]) 18:39 28 nov 2012 (CST)
<math>sup\left\{ \sqrt{a^{2}-2ac+c^{2}+b^{2}-2bd+d^{2}}\right\} </math>


--[[Usuario:Ignacio Peralta Martínez|Ignacio Peralta Martínez]] ([[Usuario discusión:Ignacio Peralta Martínez|discusión]]) 03:28 29 nov 2012 (CST)




Línea 90: Línea 67:




'''1.35 Demuestre que si <math>\sum_{n=0}^{\infty} z_{n}</math>  es convergente, entonces la sucesión <math>\{z_{n}\}</math> converge a 0.La afirmación recíproca es falsa: considere la ''serie armónica'' <math> \sum_{n=0}^{\infty} 1/n </math>'''
Demostración:
Para k grande <math> a_{k}=S_{k}-S_{k-1} </math> entonces:
<math> \lim_{k \to \infty} a_{k}= \lim_{k \to \infty} (S_{k}-S_{k-1}) </math>
<math> \textrm{Si S es suma de la serie } \sum_{k=0}^{\infty} a_{k} \textrm{ entonces } \lim_{k \to \infty}S_{k}=S</math>
<math> \textrm{ donde }\lim_{k\to\infty}a_{k} = \lim_{k \to \infty} (S_{k}-S_{k-1}) =S-S=0</math>


--[[Usuario:Cesar|Cesar]] ([[Usuario discusión:Cesar|discusión]]) 20:55 27 nov 2012 (CST)
----


'''1.36. Demuestre que toda serie <math>\textstyle \sum_{n=0}^\infty z_n </math> absolutamente convergente es convergente. Dé un contraejemplo de una serie convergente que no es absolutamente convergente.'''
'''1.36. Demuestre que toda serie <math>\textstyle \sum_{n=0}^\infty z_n </math> absolutamente convergente es convergente. Dé un contraejemplo de una serie convergente que no es absolutamente convergente.'''
Línea 166: Línea 134:


--[[Usuario:Belen|Belen]] ([[Usuario discusión:Belen|discusión]]) 21:13 22 nov 2012 (CST)
--[[Usuario:Belen|Belen]] ([[Usuario discusión:Belen|discusión]]) 21:13 22 nov 2012 (CST)
----
''' 1.47 Demuestre que <math> \lim_{n\to \infty} \frac{1}{n!} </math>'''
''Criterio del cociente o la razón''
Sea <math> \{a_{n}\}</math> una sucesión tal que: <math> a_{n}>0 \textrm{ y sea } B=\lim_{n\to \infty} \frac{a_{n+1}}{a_{n}} </math> entonces:
:1)Si B<1, la serie <math>\sum_{n=1}^{\infty} a_{n}</math> converge
:2)Si B>1, la serie <math>\sum_{n=1}^{\infty} a_{n}</math> diverge
:3)Si B=1, no hay información
Solución:
Se cumple que:
<math> n! \ge 2^{n-1}  \qquad \forall \qquad n\ge 1  \Rightarrow \frac{1}{2^{n-1}} \ge \frac{1}{n!} </math>entonces:
<math>\sum_{n=1}^{\infty} (\frac{1}{n!})^{1/n} \le \sum_{n=1}^{\infty} (\frac{1}{2^{n-1}})^{1/n}</math>
<math> \sum_{n=1}^{\infty} (\frac{1}{n!})^{1/n} \le \sum_{n=1}^{\infty} (\frac{1}{2^{n-1}})^{1/n}</math>
Sean: <math> a_{n}=\frac{1}{n!} \qquad b_{n}=\frac{1}{2^{n-1}} </math>, entonces:
<math> \sum_{n=1}^{\infty} (\frac{1}{2^{n-1}}) =\sum_{n=0}^{\infty} (\frac{1}{2^n})</math>, por lo que:
<math> \lim_{n\to \infty} \frac{a_{n+1}}{a_{n}} = \lim_{n\to \infty} \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \lim_{n\to \infty} \frac{n!}{(n+1)!} = \lim_{n\to \infty}\frac{1}{n+1} = 0</math>
--[[Usuario:Jean Carlo Cruz Venegas|Jean Carlo Cruz Venegas]] ([[Usuario discusión:Jean Carlo Cruz Venegas|discusión]]) 09:58 4 dic 2012 (CST)


----
----

Revisión del 22:40 4 dic 2012

Sucesiones y series de números complejos

1.32 Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \boldsymbol{\Omega}\subseteq\mathbb{C} demuestre queError al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \boldsymbol{\Omega}^- =\{Z \in \mathfrak{C}: Z \} es un punto de acumulación de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \boldsymbol{\Omega} .


Un punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \mathcal{Z}_0 se dice que es un punto de acumulación Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \boldsymbol{\Omega} , si al menos alrededor de contiene un punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \mathcal{Z} . Entonces si , este contiene todos sus puntos de acumulación


Ayudandonos del lema 1.12


si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \boldsymbol{\Omega}\subseteq\mathfrak{C} , un punto de acumulción de si y sólo sí existe una sucesiónError al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \{\mathcal{Z}_n\}\subseteq\boldsymbol{\Omega}-\{\mathcal{Z}\} , tal que


.


Una sucesión convergente tiene exactamente un punto límite, su límite


si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \mathcal{Z} es un punto de acumulación de , y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \mathcal{Z}\in \boldsymbol{\Omega} , por lo tanto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \mathcal{Z}\notin \left(\boldsymbol{C}-\boldsymbol{\Omega}\right).


Hay una bola Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): B\left(\mathcal{Z};\boldsymbol{\epsilon}\right) centrado en , y pasa que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \boldsymbol{\Omega}\cap\left(B\left(\mathcal{Z};\boldsymbol{\epsilon}\right)-\{\mathcal{Z}\}\right)\neq &Oslash;} .


Por el ejercicio 1.21, tenemos que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \mathcal{Z}\in \left(\boldsymbol{\Omega}-\{\mathcal{Z}\}\right)^- , entonces si hay una sucesión , tal que sea convergente, osea .

--Luis Antonio (discusión) 18:39 28 nov 2012 (CST)



1.34 Demuestre que diámetro Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): di\acute{a}mA=di\acute{a}m\bar{A} , para todo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): A\subseteq\mathbb{C} .

sea y con


Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): sup\left\{ \mid(a+bi)-(c+di)\mid\right\}

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): sup\left\{ \mid(a-c)+(b-d)i\mid\right\}

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): sup\left\{ \sqrt{a^{2}-2ac+c^{2}+b^{2}-2bd+d^{2}}\right\}

por otro lado

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): =sup\left\{ \mid(a-bi)-(c-di)\mid\right\}

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): =sup\left\{ \mid(a-c)+(d-b)i\mid\right\}

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): =sup\left\{ \sqrt{(a-c)^{2}+(d-b)^{2}}\right\}

--Ignacio Peralta Martínez (discusión) 03:28 29 nov 2012 (CST)





1.36. Demuestre que toda serie Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \textstyle \sum_{n=0}^\infty z_n absolutamente convergente es convergente. Dé un contraejemplo de una serie convergente que no es absolutamente convergente.

Recordemos que una serie Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \textstyle \sum_{n=0}^\infty z_n se dice absolutamente convergente si y sólo si converge.

Proposiciones preliminares:

a) Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \sum_{n=0}^\infty a_n converge, converge y , entonces Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \sum_{n=0}^\infty b_n converge.
Este resultado es consecuencia del criterio de comparación de las sucesiones.

b) Si converge, entonces Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \sum_{n=0}^\infty a_n converge.
Es consecuencia de a) usando que .

c) Sea Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z_n = a_n + ib_n con Error al representar (error de sintaxis): a_n, b_n ∈ \mathbb{R} , entonces converge si y sólo si converge y converge.
Esto es consecuencia de la proposición análoga para sucesiones y de la definición de serie.

Demostración.

Sea con Error al representar (error de sintaxis): a_n, b_n ∈ \mathbb{R} y convergente.
Como , por la proposición a) se deduce que converge.
Ahora, por la proposición b) concluímos que
converge. (A)
Y de forma análoga vemos que converge. (B)

Teniendo los resultados (A) y (B) y con la proposición c), tenemos que
converge.

Por otro lado, si tomamos la serie
, ésta converge, pero
.
Y con ello vemos que una serie convergente no es necesariamente absolutamente convergente.

--Belen (discusión) 19:48 22 nov 2012 (CST)


1.40 Si Error al representar (error de sintaxis): \alpha ∈ \mathbb{R} y , demuestre que .

Proposición preliminar:

a) Sean Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \left\{ x_n \right\}, \left\{ y_n \right\}, \left\{ z_n \right\} \subseteq \mathbb{R} \mbox{ tal que } \lim \left\{x_n \right\} = a = \lim \left\{z_n \right\}, \mbox{ si } x_n \le y_n \le z_n \forall n ∈ \mathbb{N} \Rightarrow \lim \left\{y_n \right\} = a.

Demostración:
Tenemos que
Además

De aquí,

Demostración:

Sean

Primero supongamos que
Ya que , por la proposición a),
.

El recíproco:
Sea convergente, i.e., .
Supongamos
Tenemos que (*)
Por otra parte, fijemos .
Como
De esto y con (*) tenemos que
y como esto sucede .

--Belen (discusión) 21:13 22 nov 2012 (CST)


1.47 Demuestre que Criterio del cociente o la razón Sea una sucesión tal que: entonces:

1)Si B<1, la serie converge
2)Si B>1, la serie diverge
3)Si B=1, no hay información


Solución: Se cumple que: entonces:

Sean: , entonces: , por lo que:

--Jean Carlo Cruz Venegas (discusión) 09:58 4 dic 2012 (CST)



--mfg-wiki (discusión) 17:32 15 nov 2012 (UTC)

Compleja:z-ej-cap1.0

Compleja:z-ej-cap1.1