Skip to main content
Home
luz

Main navigation

  • Home
  • research
  • scators
  • optics
  • ciencia
  • arsciencia

Breadcrumb

  1. Home
  2. scators
  3. imaginary scator algebra

multiplicativa - trad

Profile picture for user mfg
By mfg, 9 November, 2017

\(\require{autoload-all}\)

The multiplicative to additive mapping  for imaginary scators is a surjective function $\mathfrak{f}_{ma}:\mathbb{R}^{+1+n}\rightarrow\mathbb{S}^{1+n}$,

\[ \mathfrak{f}_{ma}:\left(\varphi_{0};\varphi_{1},\ldots,\varphi_{j},\ldots,\varphi_{n}\right)\longmapsto\left(f_{0};f_{1},\ldots,f_{j},\ldots,f_{n}\right), \]

where

\[ f_{0}=\varphi_{0}\prod_{k=1}^{n}\cos\left(\varphi_{k}\right),\quad f_{j}=\varphi_{0}\prod_{k\neq j}^{n}\cos\left(\varphi_{k}\right)\sin\left(\varphi_{j}\right)\textrm{ for }j\textrm{ from }1\textrm{ to }n.\label{eq:ma vars} \]

\(\require{color}\)

 

The multiplicative to additive transformation $\mathbb{R}^{+1+n}\underset{\mathfrak{f}_{ma}}{\longmapsto}\mathbb{S}^{1+n}$.

 

 

Spanish

Book traversal links for multiplicativa - trad

  • cusphere
  • Up

Book navigation

  • fractals
  • real scator algebra
  • imaginary scator algebra
    • imaginary scator's involution
    • multiplicativa - trad
Canal RSS

Language switcher

  • Spanish
  • English

User account menu

  • Log in
Powered by Drupal