Usuario discusión:Cesar

De luz-wiki
Revisión del 22:06 27 nov 2012 de Cesar (discusión | contribs.)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)

1.4) Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): a\in \mathbb{R} demuestre que =-Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \omega(a) .

Y si , demuestre que =

Demostración

Sea Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \omega=a=(a,0) , entonces Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \omega (-a) =-a Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \omega(-a) =

y

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \omega (a^{-1}) = Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \omega (a^{-1}) = =Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \omega(a)^{-1}


Sean Demostrar que:

a)Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): ||z||=||\overline{z}||


Demostración


Sea Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \overline{z}=a-ib\qquad y\qquad z=a+ib entonces

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \therefore \qquad ||z||=||\overline{z}||


b)

Demostración

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): ||zw||^2=(zw)(\overline{zw})

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \therefore\qquad ||zw||=||z||||w||


c) Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \qquad ||z+w||\leq ||z||+||w||

Demostración

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): ||z+w||^2=(z+w)(\overline{w+z})

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \qquad ||z+w||^2\leq||z||^2+2||z||||w||+||w||^2

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \therefore\qquad ||z+w||\leq||z||+||w||


d) Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): ||z-w||\geq||z||-||w||

Demostración

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): ||z||\leq||z-w||+||w||

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \therefore\qquad ||z||-||w||\leq||z-w||


Si z=a+ib, demuestre que

Demostración

a) Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \qquad \frac{z+\overline{z}}{2}= \frac{a+ib+(a-ib)}{2}

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{z+\overline{z}}{2}= \frac{2a}{2}

b)



LEYES DE MORGAN

1) Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): (A \cup B)^C=A^C \cap B^C
Demostración
Sea un x arbitrario del conjunto universal, entonces:
al ser x arbitrario
2)
Demostración
Sea un x arbitrario del conjunto universal, entonces:
al ser x arbitrario

1.18 Describa los siguientes subconjuntos de

a)

Solución

Sea , z=a+ib. Si la parte Im(z)>0 entonces b>0. la parte imaginaria de z {Im(z)}es una línea horizontal b>0

b) Solución

Sea , z=a+ib. Si la parte , entonces la parte Real de z {Re(z)}es una línea vertical

c)

Solución

Sea y z=a+ib, entonces |z-1|=|a+ib-1| ||

Es una circunferencia con centro en (1,0) y radio 2

d)

Solución

Sea y z=a+ib, entonces |z-1|=|a+ib-1|>2 ||>2 > 4 Es una circunferencia con centro en (0,1) y radio 2

e)

Solución

Sea y z=a+ib, como b>0 y

f) ,

Solución

Sea y z=a+ib, como b>0 y , , entonces hay una circunferencia con centro en (0,0) y radio 1



1.35 Demuestre que si es convergente, entonces la sucesión converge a 0.La afirmación recíproca es falsa: considere la serie armónica

Demostración: Para k grande entonces:



2.14) Encuentre todas las funciones holomorfas

Solucion:
Sea donde:

Derivando parcialmente:

:

Ambas satisfacen las ecuaciones de Riemann

2.15) Demuestre que no hay funciones holomorfas Solucion: Entonces:

Si z=0
Si z \ne 0
Si tenemos:
Si entonces:
como