Diferencia entre revisiones de «Rendijas»

De luz-wiki
Sin resumen de edición
 
(No se muestran 9 ediciones intermedias de 2 usuarios)
Línea 1: Línea 1:
=Rendijas=
=Rendijas=
La difracción en rendijas es un fenómeno amplia mente estudiado, este fenómeno se lleva a cabo mediante una luz incidente en una
apertura con dimensiones variables o en su caso varias aperturas. La difracción ocurre cuando la longitud de onda de la luz
incidente en la apertura tiene dimensiones de longitud muy parecidas. 
En los párrafos siguientes se muestra el calculo de la difracción en en cuatro diferentes aberturas (tres de ellos en 1D Y uno mas en dos dimensiones) y como se llega a la irradianza. 


==Para una sola rendija==
==Para una sola rendija==
Se considera una fuente puntual (circulo azul), la radiación


pasara por la rendija de ancho 2a y una vez que interactue
Se considera una fuente puntual (circulo azul), la radiación pasara por la rendija de ancho


con la abertura sera detectada en una pantalla(Figura 1).
2a y una vez que interactue con la abertura sera detectada en una pantalla (Figura 1).


[[Image:1rendija.jpg|frame|c|0.05px|Figura 1: En la figura se muestra el intervalo [a,-a] ]]
[[Image:11rendija.jpg|frame|c|0.05px|Figura 1: En la figura se muestra el intervalo [a,-a] ]]


La solución se muestra de la siguiente manera, donde <math> l_{1}  </math> y <math> l_{2}  </math>
La solución se muestra de la siguiente manera, donde <math> l_{1}  </math> y <math> l_{2}  </math>
Línea 15: Línea 23:
<math> \Psi(P)=c\int\limits_{l_{1}}^{l_{2}}e^{i\kappa\alpha\xi}\, d\xi  </math>
<math> \Psi(P)=c\int\limits_{l_{1}}^{l_{2}}e^{i\kappa\alpha\xi}\, d\xi  </math>


con base a la figura 1. se observa que los limites de integracion seran <math> a  </math> en el limite superior y <math>-a </math> en el limite inferior.
con base a la figura 1. se observa que los limites de integración serán <math> a  </math> en el limite superior y <math>-a </math> en el limite inferior.


<math> \Psi(P)=c \frac{e^{-i \kappa \alpha \xi}}{-i\kappa \alpha}|^{\;a}_{-a}  </math>
<math> \Psi(P)=c \frac{e^{-i \kappa \alpha \xi}}{-i\kappa \alpha}|^{\;a}_{-a}  </math>
Línea 49: Línea 57:
==Apertura rectangular==
==Apertura rectangular==


Para una apertura retangular se considera un rectangulo de lados 2a y 2b, utilizando la integral de difracción de Fraunhofer
[[Image:rec.jpg|frame|c|0.05px|Figura 2: En la figura se muestran las dimensiones del rectángulo]]
 
Para una apertura rectangular se considera un rectángulo de lados 2a y 2b, utilizando la integral de difracción de Fraunhofer
 
 


<math> \Psi(P)=c  \int\limits_{-a}^{a}  \int\limits_{-b}^{b}    e^{-i\kappa(p\xi+q\eta)} d\xi d\eta= c\{     
<math> \Psi(P)=c  \int\limits_{-a}^{a}  \int\limits_{-b}^{b}    e^{-i\kappa(p\xi+q\eta)} d\xi d\eta= c\{     
Línea 55: Línea 67:
\} </math>
\} </math>


En la figura 2 se muestran las dimensiones de la apertura.
En la figura 2 se muestran las dimensiones de la apertura donde los ejes ahora son llamados con otro nombre, en el eje x se tiene <math>\xi</math> y en el eje "y" la letra <math>\eta</math>
 
 


observando solo la primera integral con los limites entre a y -a se procede a resolver y evaluar de la siguiente forma.
 
Observando solo la primera integral con los limites entre a y -a se procede a resolver y evaluar de la siguiente forma.


<math> \Psi(P)= \int\limits_{-a}^{a} e^{-i\kappa p\xi} d\xi= - \frac{1}{i \kappa p} \{ e^{-i \kappa pa}-e^{-i \kappa qb} \}
<math> \Psi(P)= \int\limits_{-a}^{a} e^{-i\kappa p\xi} d\xi= - \frac{1}{i \kappa p} \{ e^{-i \kappa pa}-e^{-i \kappa qb} \}
=2 \frac{Sen (\kappa pa)}{\kappa pa}</math>
=2 \frac{Sen (\kappa pa)}{\kappa pa}</math>


De  igual forma se realiza la integral faltante. La intensidad esta dada por.
De  igual forma se realiza la otra integral. La intensidad esta dada por.


<math> I(P)=|\Psi(P)|^{2}=(\frac{Sen \kappa pa}{\kappa pa})^{2}(\frac{Sen \kappa qb}{\kappa qb})^{2}  </math>
<math> I(P)=|\Psi(P)|^{2}=I_{0}(\frac{Sen \kappa pa}{\kappa pa})^{2}(\frac{Sen \kappa qb}{\kappa qb})^{2}  </math>
 
Donde <math>I_{0}</math> es la intensidad en el centro de la pantalla.


==Doble rendija==
==Doble rendija==
Línea 70: Línea 87:
Utilizando la misma idea de una sola rendija vista anteriormente, se escribe la solución de la siguiente manera.
Utilizando la misma idea de una sola rendija vista anteriormente, se escribe la solución de la siguiente manera.


se puede observar en la figura 2. la simetría que se encuentra al tomar las distancias de la manera en que se muestra
se puede observar en la figura 3. la simetría que se encuentra al tomar las distancias de la manera en que se muestra


para posteriormente hacer la integral y reducir factores.
para posteriormente hacer la integral y reducir factores.


[[Image:2rendija.png|frame|r|1px|Figura 2: En la figura se muestra los intervalos de integración (superior e inferior) ]]
[[Image:2rendija.jpg|frame|r|1px|Figura 3: En la figura se muestra los intervalos de integración (superior e inferior) ]]




Línea 83: Línea 100:
<math> \Psi(P)=c \frac{1}{-i \kappa \alpha} \{e^{-i \kappa \alpha (-d+a)}-e^{-i \kappa \alpha (-d-a)}+e^{-i \kappa \alpha (d+a)}-e^{-i \kappa \alpha (d-a)}    \} </math>
<math> \Psi(P)=c \frac{1}{-i \kappa \alpha} \{e^{-i \kappa \alpha (-d+a)}-e^{-i \kappa \alpha (-d-a)}+e^{-i \kappa \alpha (d+a)}-e^{-i \kappa \alpha (d-a)}    \} </math>


Mulptiplicando por un factor 2\2.
Multiplicando por un factor 2\2.


<math> \Psi(P)= \frac{2c}{2} \frac{1}{-i \kappa \alpha} \{e^{i \kappa \alpha (d-a)}  
<math> \Psi(P)= \frac{2c}{2} \frac{1}{-i \kappa \alpha} \{e^{i \kappa \alpha (d-a)}  
Línea 90: Línea 107:
-e^{-i \kappa \alpha (d-a)}    \} </math>
-e^{-i \kappa \alpha (d-a)}    \} </math>


Reacomodando los terminos de la suma de exponenciasles.
Haciendo un Re acomodando los términos de la suma de exponenciales.




Línea 117: Línea 134:




Usando la indentidad.
Usando la identidad.


<math> Sen(a)-Sen(b)=2Cos(\frac{1}{2}(a+b)Sen\frac{1}{2}(a-b))</math>
<math> Sen(a)-Sen(b)=2Cos(\frac{1}{2}(a+b)Sen\frac{1}{2}(a-b))</math>
Línea 130: Línea 147:
\}  </math>
\}  </math>


haciendo las sumas y eliminando terminos se obtiene.
haciendo las sumas y eliminando términos se obtiene.


<math> \Psi(P)= \frac{4c}{ \kappa \alpha} \{  
<math> \Psi(P)= \frac{4c}{ \kappa \alpha} \{  
Línea 149: Línea 166:
   \} </math>
   \} </math>


==N Rendijas==


==N Rendijas==
Para n rendijas se tiene se tiene la solución construida de la
Para n dendijas se tiene se tiene la solución construida de la


siguiente manera, se puede observar el arreglo de las n rendigas
siguiente manera, se puede observar el arreglo de las n rendijas


en la figura 1.
en la figura 4.


[[Image:Nrendija.jpg|frame|r|1px|Figura 3: En la figura se muestra los intervalos de integración (superior e inferior), buscando una simetria entre todos ellos.]]
[[Image:nnrendija.jpg|frame|r|1px|Figura 4: En la figura se muestra los intervalos de integración (superior e inferior), buscando una simetria entre todos ellos.]]




Línea 171: Línea 188:
  =\frac{e^{i\kappa\alpha\xi}}{\kappa\alpha\xi}|^{l_{2}}_{l_{1}}=\frac {1}{\kappa\alpha}\frac{e^{i\kappa\alpha l_{2}}-e^{i\kappa\alpha l_{1}}}{i}</math>
  =\frac{e^{i\kappa\alpha\xi}}{\kappa\alpha\xi}|^{l_{2}}_{l_{1}}=\frac {1}{\kappa\alpha}\frac{e^{i\kappa\alpha l_{2}}-e^{i\kappa\alpha l_{1}}}{i}</math>


Resolviendo la primera integral y evaluando en los limites.
Resolviendo la primera integral, segunda, hasta la enésima integral.


<math>1=\frac{1}{\kappa \alpha} \frac{e^{i \kappa \alpha b}-1}{i} </math>
<math>1=\frac{1}{\kappa \alpha} \frac{e^{i \kappa \alpha b}-1}{i} </math>
Línea 191: Línea 208:
Para la eneada ecuación.
Para la eneada ecuación.


<math> \frac{1}{\kappa \alpha} e^{i \kappa \alpha (n-1)h}\frac{(e^{i \kappa \alpha b}-1)}{i} </math>
<math> \frac{1}{\kappa \alpha} (e^{i \kappa \alpha (n-1)h}) (\frac{e^{i \kappa \alpha b}-1}{i}) </math>


Donde se puede observar un termino comun en todas los terminos, se puede reescribir la ecuacion como sigue.
Donde se puede observar un termino común en todas los términos, se puede reescribir la ecuación como sigue.




Línea 216: Línea 233:
<math> \sigma=\frac{x^{n}-1}{x-1}= \frac{e^{i \kappa \alpha nh}-1}{e^{i \kappa \alpha h}-1}</math>
<math> \sigma=\frac{x^{n}-1}{x-1}= \frac{e^{i \kappa \alpha nh}-1}{e^{i \kappa \alpha h}-1}</math>


en la ecuacion.
en la ecuación.


<math> \Psi(P)=c \frac{e^{i \kappa \alpha b}-1}{\kappa \alpha} \{ \frac{e^{i \kappa \alpha nh}-1}{e^{i \kappa \alpha h}-1} \}      </math>
<math> \Psi(P)=c \frac{e^{i \kappa \alpha b}-1}{\kappa \alpha} \{ \frac{e^{i \kappa \alpha nh}-1}{e^{i \kappa \alpha h}-1} \}      </math>
Línea 250: Línea 267:


<math>|\Psi(P)|= I_{0} (\frac{Sen(\beta)}{\beta})^{2} (\frac{Sen (n\beta)}{n \beta})^{2}  </math>
<math>|\Psi(P)|= I_{0} (\frac{Sen(\beta)}{\beta})^{2} (\frac{Sen (n\beta)}{n \beta})^{2}  </math>
== Fuentes y referencias ==
''"Optics"'', 2ta edición, Eugene Hecht, Alfred Zajac.
''"Pinciples of optics"'', Max Born.
[[Category:optica]]

Revisión actual - 08:37 5 oct 2023

Rendijas

La difracción en rendijas es un fenómeno amplia mente estudiado, este fenómeno se lleva a cabo mediante una luz incidente en una

apertura con dimensiones variables o en su caso varias aperturas. La difracción ocurre cuando la longitud de onda de la luz

incidente en la apertura tiene dimensiones de longitud muy parecidas.


En los párrafos siguientes se muestra el calculo de la difracción en en cuatro diferentes aberturas (tres de ellos en 1D Y uno mas en dos dimensiones) y como se llega a la irradianza.

Para una sola rendija

Se considera una fuente puntual (circulo azul), la radiación pasara por la rendija de ancho

2a y una vez que interactue con la abertura sera detectada en una pantalla (Figura 1).

Figura 1: En la figura se muestra el intervalo [a,-a]

La solución se muestra de la siguiente manera, donde y son los limites de la rendija por donde pasara la luz.

con base a la figura 1. se observa que los limites de integración serán en el limite superior y en el limite inferior.

Evaluando.

multiplicando por 2/2.


Recordando que


Se nombra.

Haciendo el cambio de variable se llega a.


Elevando al cuadrado.

Apertura rectangular

Figura 2: En la figura se muestran las dimensiones del rectángulo

Para una apertura rectangular se considera un rectángulo de lados 2a y 2b, utilizando la integral de difracción de Fraunhofer


En la figura 2 se muestran las dimensiones de la apertura donde los ejes ahora son llamados con otro nombre, en el eje x se tiene y en el eje "y" la letra



Observando solo la primera integral con los limites entre a y -a se procede a resolver y evaluar de la siguiente forma.

De igual forma se realiza la otra integral. La intensidad esta dada por.

Donde es la intensidad en el centro de la pantalla.

Doble rendija

Utilizando la misma idea de una sola rendija vista anteriormente, se escribe la solución de la siguiente manera.

se puede observar en la figura 3. la simetría que se encuentra al tomar las distancias de la manera en que se muestra

para posteriormente hacer la integral y reducir factores.

Figura 3: En la figura se muestra los intervalos de integración (superior e inferior)


Multiplicando por un factor 2\2.

Haciendo un Re acomodando los términos de la suma de exponenciales.



Usando la identidad.

Entonces.

haciendo las sumas y eliminando términos se obtiene.


Con un cambio de variable se obtiene.

N Rendijas

Para n rendijas se tiene se tiene la solución construida de la

siguiente manera, se puede observar el arreglo de las n rendijas

en la figura 4.

Figura 4: En la figura se muestra los intervalos de integración (superior e inferior), buscando una simetria entre todos ellos.


Donde cada uno de los sumandos representan la solución a la rejilla individual, para cada una de las integrales se observa .

Resolviendo la primera integral, segunda, hasta la enésima integral.

.

.

.

La segunda ecuación se puede reescribir de la siguiente manera.

Para la eneada ecuación.

Donde se puede observar un termino común en todas los términos, se puede reescribir la ecuación como sigue.


Recordando.

Restando las dos ecuaciones anteriores.

Si se observa la ecuación se reescribe.

en la ecuación.



Fuentes y referencias

"Optics", 2ta edición, Eugene Hecht, Alfred Zajac.

"Pinciples of optics", Max Born.