Diferencia entre revisiones de «Radiacion: Guias de onda»

De luz-wiki
Línea 54: Línea 54:




<math>\vec{E_0} = E_x(\mathbf{x,y})x + E_y(\mathbf{x,y})y +E_z(\mathbf{x,y})z \quad\quad \quad ()</math>
<math>\vec{E_0} = E_x(\mathbf{x,y})x + E_y(\mathbf{x,y})y +E_z(\mathbf{x,y})z \quad\quad \quad (\star )</math>






<math>\vec{B_0} = B_x(\mathbf{x,y})x + B_y(\mathbf{x,y})y +B_z(\mathbf{x,y})z \quad\quad \quad ()</math>
<math>\vec{B_0} = B_x(\mathbf{x,y})x + B_y(\mathbf{x,y})y +B_z(\mathbf{x,y})z \quad\quad \quad (\star\star)</math>


Comencemos demostrando que I satisface a 3, esto es que .
Comencemos demostrando que I satisface a 3, esto es que .
Línea 169: Línea 169:


(agregar imagenes y show)
(agregar imagenes y show)


== Ejemplo clásico ==
== Ejemplo clásico ==

Revisión del 23:39 3 dic 2009

Guías de onda

Las guías de onda se analizan resolviendo las ecuaciones de Maxwell.

Comencemos escribiendolas:






Ahora suponemos un conductor perfecto

Guia conductora



esto es que tanto el campo eléctrico, como el magnético son nulos dentro del conductor.

 y 

luego las condiciones de frontera en el interior del conductor serán :

Entonces estamos buscando expresiones del tipo

donde consideramos .


Tanto I como II deben satisfacer las ecuaciones de maxwell, asi pues debemos encontrar y tal que satisfagan las ecuaciones (1-4),sujetas a las condiciones de fronteras i) y ii).

Ahora re-escribimos y de la siguiente manera:



Comencemos demostrando que I satisface a 3, esto es que .


.



.


De manera que


y el mismo procedimiento se le aplica a 


.


Continuando con este mismo proceso , obtenemos lo siguiente :

1)

2)

3)


4)

5)

6)


Ya con estas ecuaciones, queremos encontrar , en términos de .


Resolviendo el conjunto de ecuaciones de la 1-6. tenemos:




.

Sustituyendo estos resultados en , tenemos.


Usando las expresiones para , y sustituyendo en tenemos.


                                    ó    



.

y al hacerlo para

, obtenemos algo similar:


.

De (a) y (b) , podemos decir lo siguiente:

Si , llamamos TE (onda transversal eléctrica)

Si , llamamos TM (onda transversal magnética)

Si , llamamos TEM (onda transversal electromagnética) , sin embargo se puede ver que el tipo de onda TEM , no puede existir en una guía de onda.


(agregar imagenes y show)

Ejemplo clásico

Guía de onda rectangular

Supongamos que nuestra onda es del tipo TE, es decir, , entonces resolvemos (b)

.

cuyas condiciones de frontera son


Ahora proponemos una solución para (b)


.

Sustituyendo en (b), tenemos que


y  


con

   

entonces la solucion para X sera :