Diferencia entre revisiones de «Radiacion: Guias de onda»

De luz-wiki
Línea 249: Línea 249:


Notemos que si
Notemos que si
<center><math> w < \mathrm{c}\pi\sqrt{(\frac{m}{a})^2 + (\frac{n}{b})^2} \equiv \mathit{W_mn}</math></center>

Revisión del 18:26 5 dic 2009

Guías de onda

Las guías de onda se analizan resolviendo las ecuaciones de Maxwell.

Comencemos escribiendolas:






Ahora suponemos un conductor perfecto

Guia conductora



esto es que tanto el campo eléctrico, como el magnético son nulos dentro del conductor.

 y 

luego las condiciones de frontera en el interior del conductor serán :

Entonces estamos buscando expresiones del tipo

donde consideramos .


Tanto I como II deben satisfacer las ecuaciones de maxwell, asi pues debemos encontrar y tal que satisfagan las ecuaciones (1-4),sujetas a las condiciones de fronteras i) y ii).

Ahora re-escribimos y de la siguiente manera:



Comencemos demostrando que I satisface a 3, esto es que .


.



.


De manera que


y el mismo procedimiento se le aplica a 


.


Continuando con este mismo proceso , obtenemos lo siguiente :

1)

2)

3)


4)

5)

6)


Ya con estas ecuaciones, queremos encontrar , en términos de .


Resolviendo el conjunto de ecuaciones de la 1-6. tenemos:




.

Sustituyendo estos resultados en , tenemos.


Usando las expresiones para , y sustituyendo en tenemos.


                                    ó    



.

y al hacerlo para

, obtenemos algo similar:


.

De (a) y (b) , podemos decir lo siguiente:

Si , llamamos TE (onda transversal eléctrica)

Si , llamamos TM (onda transversal magnética)

Si , llamamos TEM (onda transversal electromagnética) , sin embargo se puede ver que el tipo de onda TEM , no puede existir en una guía de onda.


(agregar imagenes y show)

Ejemplo clásico

Guía de onda rectangular

Tenemos una guía de dimensiones

Supongamos que nuestra onda que incide en la guía es del tipo TE, es decir, , entonces resolvemos (b)

.

cuya condicion de frontera es


Ahora proponemos una solución para (b)


.

Sustituyendo en (b), tenemos que


                                      




y  


con

   

entonces la solucion para X sera :


,

usando condiciones a la frontera ,

y ,


Hacemos el mismo procedimiento para Y

,




.


De esta ecuacuación notamos los modos normales , a esta solución se lo conoce como modo, donde al menos un indice debe ser distinto de 0.


Ahora de , se tiene que

Notemos que si