Identidad vectorial de Green

De luz-wiki

La siguiente pagina, es una traducción de la pagina anterior, "Green's vector identity"

La segunda derivada de dos funciones vectoriales, esta relacionada con la divergencia de las funciones vectoriales con los operadores de primer orden, es decir:

Ver también wikipedia: Green's vector identity

Introducción [1]

La segunda identidad de Green establece una relación entre las derivadas de segundo y (la divergencia de) primer orden de dos funciones escalares

Donde y son dos campos escalares arbitrarios. Esta identidad es de gran importancia en física porque así se pueden establecer ecuaciones de continuidad para campos escalares como la masa o la energía. [2].


Aunque la segunda identidad de Green siempre se presenta en el análisis vectorial, solo se encuentra una versión escalar en los libros de texto. Incluso en la literatura especializada, no es fácil encontrar una versión vectorial. En la teoría de la difracción vectorial, se introducen dos versiones de la segunda identidad de Green. Una variante invoca la divergencia de un producto cruz [3][4][5] y establece una relación en términos del rotacional-rotacional de un campo

. Esta ecuación puede ser escrita en términos del Laplaciano como:

Sin embargo, los términos , no podía escribirse fácilmente en términos de una divergencia. El otro enfoque introduce bi-vectores, esta formulación requiere una función de Green diádica [6][7].

Divergencia de dos campos vectoriales

Considere que los campos escalares en la segunda identidad de Green son los componentes cartesianos de los campos vectoriales, es decir and . Sumando la ecuación para cada componente, obtenemos:


El lado izquierdo, de acuerdo con la definición de producto punto, puede ser escrito de forma vectorial como:

El lado derecho es un poco más difícil de expresar en términos de operadores vectoriales. Debido a la distributividad del operador de divergencia sobre la suma, la suma de la divergencia es igual a la divergencia de la suma, es decir . Recordar que la identidad vectorial para el gradiente de un producto escalar ,la cual, escrita en componentes vectoriales viene dada por Este resultado es similar a lo que deseamos evidenciar en términos vectoriales 'excepto' por el signo menos. Dado que los operadores diferenciales en cada término actúan sobre un vector (es decir ’s) o el otro (’s) , la contribución a cada término debe ser

Se puede demostrar rigurosamente que estos resultados son correctos mediante evaluación de los componentes del vector. Por lo tanto, el lado derecho se puede escribir en forma vectorial como

Putting together these two results, a theorem for vector fields analogous to Green’s theorem for scalar fields is obtained



Reassuringly, from the vector relationship we can go back to the scalar case as shown in the scalar limit. The curl of a cross product can be written as ; Green’s vector identity can then be rewritten as

Since the divergence of a curl is zero, the third term vanishes and Green’s vector identity is



With a similar porcedure, the Laplacian of the dot product can be expressed in terms of the Laplacians of the factors

corollary

As a corollary, the awkward terms in the introduction can now be written in terms of a divergence by comparison with the vector Green equation

This result can be verified by expanding the divergence of a scalar times a vector on the RHS.

derivation by components

In order to evaluate consider the first term in three dimensional Cartesian components that may be written as

The curl in the second term is The cross product is The second term is then

that expands to

Evaluate in the x direction

canceling out terms

Analogous results are obtained in the other directions so that

that may be written out in vector form as However, the terms can be rearranged as

and thus An equivalent procedure for gives

scalar case

If we take one component vectors, for example, , the vector relationship ([eq:vec green]) becomes Since ,

and . Therefore we recover Green’s second identity for the functions .


  1. M. Fernández-Guasti. Green's second identity for vector fields. ISRN Mathematical Physics, 2012:7, 2012. Article ID: 973968. [1]
  2. M. Fernández-Guasti. Complementary fields conservation equation derived from the scalar wave equation. J. Phys. A: Math. Gen., 37:4107–4121, 2004.
  3. A. E. H. Love. The Integration of the Equations of Propagation of Electric Waves. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 197:pp. 1–45, 1901.
  4. J. A. Stratton and L. J. Chu. Diffraction Theory of Electromagnetic Waves. Phys. Rev., 56(1):99–107, Jul 1939.
  5. N. C. Bruce. Double scatter vector-wave Kirchhoff scattering from perfectly conducting surfaces with infinite slopes. Journal of Optics, 12(8):085701, 2010.
  6. W. Franz, On the Theory of Diffraction. Proceedings of the Physical Society. Section A, 63(9):925, 1950.
  7. Chen-To Tai. Kirchhoff theory: Scalar, vector, or dyadic? Antennas and Propagation, IEEE Transactions on, 20(1):114–115, jan 1972.