Diferencia entre revisiones de «El arco iris»

De luz-wiki
Sin resumen de edición
Sin resumen de edición
Línea 2: Línea 2:
La teoría elemental del arco iris fue dada primero por Antonius de Demini en el año de 1611 y, posteriormente, desarrollado con mayor exactitud por Descartes. Las características generales de los arcos primario y secundario son explicadas satisfactoriamente al considerar solo la reflexión y la refracción de la luz por una gota esférica de lluvia. Para comprender como se produce el fenómeno, concentremos primero nuestra atención en una sola gota de lluvia. Se muestra un rayo de luz solar entrando entrando en una gota de lluvia por un punto A, cerca de su parte superior. En este punto, algo de luz se refleja, y el resto se refracta dentro de la esfera liquida. En esta primera refracción la luz se dispersa en sus colores espectrales, el color violeta es el que se desvía más, y el rojo el que se desvía menos.
La teoría elemental del arco iris fue dada primero por Antonius de Demini en el año de 1611 y, posteriormente, desarrollado con mayor exactitud por Descartes. Las características generales de los arcos primario y secundario son explicadas satisfactoriamente al considerar solo la reflexión y la refracción de la luz por una gota esférica de lluvia. Para comprender como se produce el fenómeno, concentremos primero nuestra atención en una sola gota de lluvia. Se muestra un rayo de luz solar entrando entrando en una gota de lluvia por un punto A, cerca de su parte superior. En este punto, algo de luz se refleja, y el resto se refracta dentro de la esfera liquida. En esta primera refracción la luz se dispersa en sus colores espectrales, el color violeta es el que se desvía más, y el rojo el que se desvía menos.
Llegando al lado opuesto de la gota, cada color es parcialmente refractado hacia afuera (dentro del aire), y en parte reflejado hacia atrás (dentro del liquido). Alcanzando la superficie en el límite inferior, cada uno de los colores es otra vez reflejado y refractado. Esta segunda refracción es muy similar a la de un prisma, en donde la refracción en la segunda superficie aumenta la dispersión ya producida en la primera. Ésta es la trayectoria de la luz en las miles de gotas que producen el brillante arco iris.
Llegando al lado opuesto de la gota, cada color es parcialmente refractado hacia afuera (dentro del aire), y en parte reflejado hacia atrás (dentro del liquido). Alcanzando la superficie en el límite inferior, cada uno de los colores es otra vez reflejado y refractado. Esta segunda refracción es muy similar a la de un prisma, en donde la refracción en la segunda superficie aumenta la dispersión ya producida en la primera. Ésta es la trayectoria de la luz en las miles de gotas que producen el brillante arco iris.
La primera teoría sobre la formación del [[arco iris]] se debe a [[Aristóteles]]. Para él simplemente era una ''[[física/Óptica/Reflexión|reflexión]] especial de la [[luz]] sobre las [[nube]]s, formando un [[ángulo]] fijo''.
Roger Bacon midió por primera vez el ángulo del arco. Obtuvo 42º para el arco primario y 8º más alto el secundario. (Si tomamos el cambio total de [[luz]] sería 138º para el primario y 130º para el secundario).
[[Archivo:Angulos_del_arco_iris_primario_y_secundario.jpg|thumb|right|200px|Ángulos del arcoiris]]
[[Teodorico de Freiberg]], monje alemán, propone que cada gota es responsable de la formación del arco iris. Esta teoría es corroborada por [[Descartes]] tres siglos después.
El arco primario se forma gracias a que la luz se refracta al entrar en la gota y sale tras reflejarse en la cara interna. El arco secundario sufre dos reflexiones. Al haber dos reflexiones en el arco iris secundario, pierde luz respecto al primario, por eso es más débil y más raro de ver en la Naturaleza.
Para una sóla dirección, tanto Teodorico como Descartes se dieron cuenta que dentro del margen de ángulos del arco iris, se veía un sólo color. Había que modificar la posición del observador para observar los otros ángulos de [[dispersión]] (y por tanto los colores). Ambos llegaron a la conclusión de que se observan todos los colores en la Naturaleza ya que las gotas de lluvia son muchas y para un observador, se dispersa la luz en toda la gama del [[espectro]].
[[Archivo:Vision_gotas_desde_un_observador.jpg|thumb|left|100px|Visión de las gotas por un observador]]
Los procesos básicos que forman el arco iris son la [[física/Óptica/Reflexión|reflexión]] y la [[física/Óptica/Refracción|refracción]], o sea, el cambio de dirección en la propagación de la luz debido al cambio del medio material.
El parámetro básico para determinar el cambio de dirección (ángulos de incidencia y salida -ley de [[Snell]]-) es el [[índice de refracción]] '''''n'''''. Es el cociente entre la [[velocidad de la luz]] en el vacío (<math> c \approx 300.000 \mbox { km/s}</math> aproximadamente) y la velocidad de la misma en el medio.
<math>n = {c \over v}</math>
Se puede realizar un preanálisis sobre el arco iris aplicando sólo las leyes de la reflexión y la refracción. Admitiendo la esfericidad de las gotas, puedo estudiar el sistema en dos dimensiones admitiendo la [[simetría de revolución]] para los resultados. La dirección del rayo de luz solar es la horizontal y el único parámetro a tener en cuenta es la distancia al eje diametral de la circunferencia del rayo (llamado parámetro de impacto).
[[Archivo:Refracciones_reflexiones_en_una_gota.jpg|thumb|right|300px|Refracciones y reflexiones en una gota esférica]]
De la imagen de la derecha se desprende que el rayo de clase 1, se da por reflexión directa. El de clase 2 son dos transmisiones (En -1- aire-agua y -2- agua-aire). El de clase tres forma el ''arco iris primario'' que se forma tras una refracción en (1), una reflexión en (2) y una refracción en (3). El arco iris secundario se refracta tras dos reflexiones internas (una en (2) y otra en (3)). Puede haber arcos iris superiores (en laboratorio) pero en la Naturaleza no se dan porque la luz ya es muy débil tras las pérdidas por relexión y refracción sucesivas.
Los rayos dependen de su parámetro de impacto ''b'', es decir, la [[dirección]] de salida depende de él. Sin embargo los colores se ven bajo un ángulo determinado; en ese ángulo la [[intensida]]d de la luz se refuerza... ¿A qué es debido?
Cuando b es cero siguen una trayectoria recta y regresan en la dirección por la que vinieron ( ángulo <math>\Theta= 180^\circ</math>). Si aumento b, hasta llegar al radio de la gota el ángulo <math>\Theta</math> de desviación disminuye, pasando por un mínimo en <math>b \approx {7 \over 8} R</math>, donde ''R'' es el radio de la gota, y luego aumenta de nuevo. Este mínimo corresponde al ángulo de 138º de nuestro arco iris primario.
Para el arco iris secundario, el ángulo de desviación es nulo para b=0, y va aumentando mientras aumenta b. Pasa por un máximo donde <math>\Theta= 130^\circ</math> y disminuye hasta ser de nuevo cero.
Si la gota de agua está uniformemente iluminada, los parámetros de impacto varían de forma continua. Es de esperar que la mayor parte se concentren alrededor del mínimo (3) o el máximo (4), produciéndose la mayor intensidad alrededor de estos ángulos.
Los ángulos de clase (3), del arco iris primario, varían de 180º a 138º y los de clase (4), del arco iris secundario, de 0º a 130º. La intensidad en la franja de 130º a 138º es prácticamente nula. Esto explicaría la zona que existe por encima del arco iris pimario y por debajo del arco iris secundario en la que parece existir una oscuridad relativa. A esta zona se la conoce por ''banda oscura de [[Alejandro]]''.
En general hay una redistribución de los rayos y la energía, al ser dispersada la luz por las gotas. Si la dispersión fuese uniforme en el cielo, la luz se distribuiría por igual en cualquier ángulo y todo el cielo estaría uniformemente iluminado.
La teoría de [[Descartes]] es sencilla (teoría cartesiana). Hemos de admitir la existencia de rayos de clase superior a (3) y (4), ya que si no la banda oscura de Alejandro sería completamente negra. El brillo viene determinado por la variación de la velocidad del ángulo de desviación, y éste queda determinado por el parámetro de impacto ''b'' y el índice de refracción. El radio de la gota es irrelevante, ya que el fenómeno depende de la forma de la misma, no del tamaño.
--[[Usuario:Antonio de Jesus Jimenez Lopez|Antonio de Jesus Jimenez Lopez]] 06:00 17 abr 2012 (UTC)
--[[Usuario:Antonio de Jesus Jimenez Lopez|Antonio de Jesus Jimenez Lopez]] 06:00 17 abr 2012 (UTC)

Revisión del 20:08 2 may 2012

El ARCO IRIS es la exhibición mas espectacular del espectro de la luz blanca en la naturaleza. Las condiciones requeridas para la aparición de este fenómeno, son que el Sol esté brillando en alguna parte del cielo y la lluvia esté cayendo en la parte opuesta. Dando uno la espalda al Sol, se pueden ver arcos de círculos, el arco iris primario brillante, y, a veces, el arco iris secundario, más débil, con los colores invertidos. Vistos desde alguna altura conveniente o desde un avión, estos arcos pueden formar círculos completos, cuyo centro común esta situado es la dirección de la sombra del observador. La teoría elemental del arco iris fue dada primero por Antonius de Demini en el año de 1611 y, posteriormente, desarrollado con mayor exactitud por Descartes. Las características generales de los arcos primario y secundario son explicadas satisfactoriamente al considerar solo la reflexión y la refracción de la luz por una gota esférica de lluvia. Para comprender como se produce el fenómeno, concentremos primero nuestra atención en una sola gota de lluvia. Se muestra un rayo de luz solar entrando entrando en una gota de lluvia por un punto A, cerca de su parte superior. En este punto, algo de luz se refleja, y el resto se refracta dentro de la esfera liquida. En esta primera refracción la luz se dispersa en sus colores espectrales, el color violeta es el que se desvía más, y el rojo el que se desvía menos. Llegando al lado opuesto de la gota, cada color es parcialmente refractado hacia afuera (dentro del aire), y en parte reflejado hacia atrás (dentro del liquido). Alcanzando la superficie en el límite inferior, cada uno de los colores es otra vez reflejado y refractado. Esta segunda refracción es muy similar a la de un prisma, en donde la refracción en la segunda superficie aumenta la dispersión ya producida en la primera. Ésta es la trayectoria de la luz en las miles de gotas que producen el brillante arco iris.

La primera teoría sobre la formación del arco iris se debe a Aristóteles. Para él simplemente era una reflexión especial de la luz sobre las nubes, formando un ángulo fijo.

Roger Bacon midió por primera vez el ángulo del arco. Obtuvo 42º para el arco primario y 8º más alto el secundario. (Si tomamos el cambio total de luz sería 138º para el primario y 130º para el secundario).

Ángulos del arcoiris

Teodorico de Freiberg, monje alemán, propone que cada gota es responsable de la formación del arco iris. Esta teoría es corroborada por Descartes tres siglos después.

El arco primario se forma gracias a que la luz se refracta al entrar en la gota y sale tras reflejarse en la cara interna. El arco secundario sufre dos reflexiones. Al haber dos reflexiones en el arco iris secundario, pierde luz respecto al primario, por eso es más débil y más raro de ver en la Naturaleza.

Para una sóla dirección, tanto Teodorico como Descartes se dieron cuenta que dentro del margen de ángulos del arco iris, se veía un sólo color. Había que modificar la posición del observador para observar los otros ángulos de dispersión (y por tanto los colores). Ambos llegaron a la conclusión de que se observan todos los colores en la Naturaleza ya que las gotas de lluvia son muchas y para un observador, se dispersa la luz en toda la gama del espectro.

Visión de las gotas por un observador

Los procesos básicos que forman el arco iris son la reflexión y la refracción, o sea, el cambio de dirección en la propagación de la luz debido al cambio del medio material.

El parámetro básico para determinar el cambio de dirección (ángulos de incidencia y salida -ley de Snell-) es el índice de refracción n. Es el cociente entre la velocidad de la luz en el vacío ( aproximadamente) y la velocidad de la misma en el medio.

Se puede realizar un preanálisis sobre el arco iris aplicando sólo las leyes de la reflexión y la refracción. Admitiendo la esfericidad de las gotas, puedo estudiar el sistema en dos dimensiones admitiendo la simetría de revolución para los resultados. La dirección del rayo de luz solar es la horizontal y el único parámetro a tener en cuenta es la distancia al eje diametral de la circunferencia del rayo (llamado parámetro de impacto).

Refracciones y reflexiones en una gota esférica

De la imagen de la derecha se desprende que el rayo de clase 1, se da por reflexión directa. El de clase 2 son dos transmisiones (En -1- aire-agua y -2- agua-aire). El de clase tres forma el arco iris primario que se forma tras una refracción en (1), una reflexión en (2) y una refracción en (3). El arco iris secundario se refracta tras dos reflexiones internas (una en (2) y otra en (3)). Puede haber arcos iris superiores (en laboratorio) pero en la Naturaleza no se dan porque la luz ya es muy débil tras las pérdidas por relexión y refracción sucesivas.

Los rayos dependen de su parámetro de impacto b, es decir, la dirección de salida depende de él. Sin embargo los colores se ven bajo un ángulo determinado; en ese ángulo la intensidad de la luz se refuerza... ¿A qué es debido?

Cuando b es cero siguen una trayectoria recta y regresan en la dirección por la que vinieron ( ángulo ). Si aumento b, hasta llegar al radio de la gota el ángulo de desviación disminuye, pasando por un mínimo en , donde R es el radio de la gota, y luego aumenta de nuevo. Este mínimo corresponde al ángulo de 138º de nuestro arco iris primario.

Para el arco iris secundario, el ángulo de desviación es nulo para b=0, y va aumentando mientras aumenta b. Pasa por un máximo donde y disminuye hasta ser de nuevo cero.

Si la gota de agua está uniformemente iluminada, los parámetros de impacto varían de forma continua. Es de esperar que la mayor parte se concentren alrededor del mínimo (3) o el máximo (4), produciéndose la mayor intensidad alrededor de estos ángulos.

Los ángulos de clase (3), del arco iris primario, varían de 180º a 138º y los de clase (4), del arco iris secundario, de 0º a 130º. La intensidad en la franja de 130º a 138º es prácticamente nula. Esto explicaría la zona que existe por encima del arco iris pimario y por debajo del arco iris secundario en la que parece existir una oscuridad relativa. A esta zona se la conoce por banda oscura de Alejandro.

En general hay una redistribución de los rayos y la energía, al ser dispersada la luz por las gotas. Si la dispersión fuese uniforme en el cielo, la luz se distribuiría por igual en cualquier ángulo y todo el cielo estaría uniformemente iluminado.

La teoría de Descartes es sencilla (teoría cartesiana). Hemos de admitir la existencia de rayos de clase superior a (3) y (4), ya que si no la banda oscura de Alejandro sería completamente negra. El brillo viene determinado por la variación de la velocidad del ángulo de desviación, y éste queda determinado por el parámetro de impacto b y el índice de refracción. El radio de la gota es irrelevante, ya que el fenómeno depende de la forma de la misma, no del tamaño.


--Antonio de Jesus Jimenez Lopez 06:00 17 abr 2012 (UTC)