Diferencia entre revisiones de «Compleja:ej-cap1.4»

De luz-wiki
Sin resumen de edición
Sin resumen de edición
Línea 280: Línea 280:
tomamos k=0
tomamos k=0


<math>\cos \pik</math>
<math>\cos \pi</math>
   
   



Revisión del 10:28 5 dic 2009

EJERCICIOS 1.4.1

1.-Demuestre la identidad .



sean Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): g , dos funciones definidas y derivables en un mismo punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z .



Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{\left(f.g\right)\left(z+h\right)-\left(f.g\right)\left(z\right)}{h}=\frac{f\left(z+h\right).g\left(z+h\right)-f\left(z\right)g\left(z\right)}{h}



si se suma y se resta en el numerador , la fraccion anterior no varia.






sacando factor comun en los dos primeros sumandos, y , en los otros dos.




Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): =\frac{g\left(z+h\right)\left[f\left(z+h\right)-f\left(z\right)\right]+f\left(z\right)\left[g\left(z+h\right)-g\left(z\right)\right]}{h}


Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): =g\left(z+h\right).\frac{f\left(z+h\right)-f\left(z\right)}{h}+f\left(z\right).\frac{g\left(z+h\right)-g\left(z\right)}{h} .



si ahora se toman limites cuando tiende a cero.


Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \lim_{h\rightarrow 0}g\left(z+h\right)=g\left(z\right) , pues es continua en Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z ya que es derivable en Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z .


, por definicion de derivada.


, al no depender Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f\left(z\right) de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): h .



Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \lim_{h\rightarrow 0}\frac{g\left(z+h\right)-g\left(z\right)}{h}=g'\left(z\right) , por definicion.


por tanto,



--Josua Da Vinci 20:36 17 nov 2009 (UTC)



2.- Encuentre una región donde Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{3z^{4}-2z^{2}+i}{z^{3}-27i} sea holomorfa, calcule la derivada.

Solución

Utilizando la regla de derivación para cocientes


Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f'\left(z\right)=\frac{u'g-g'u}{g^{2}}


se tiene lo siguiente


Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f'\left(z\right)=\frac{\left(12z^{3}-4z\right)\left(z^{3}-27i\right)-\left(3z^{2}\right)\left(3z^{4}-2z^{2}+i\right)}{\left(z^{3}-27i\right)^{2}}



es holomorfa en


--Dali 01:56 15 nov 2009 (UTC)




3 Sea f la funcion de en en definida por Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \begin{array}{lcr} f(x,y) & = (x^2+y^2,0)\end{array} (en notación compleja Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z\Rightarrow\ |z|^2 ),calcule su matriz jacobiana.


por definicion la matriz jacodiana es

Para números que pertenecen al campo de los reales.

partiendo de

donde y

Usando las definiciones obtenemos su matriz jacobiana, obteniendo sus parciales.

, , Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{f_2}{dx}= 0 , Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{f_2}{dy}= 0 ,

Construyendo su matriz jacobiana tenemos finalmente.

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \begin{vmatrix} 2x & 2y \\ 0 & 0 \end{vmatrix}

--Karla 22:08 15 nov 2009 (UTC)Karla


4. Sea Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f(z) =


EJERCICIOS 1.4.2

1.Verifique directamente que se cumplen las ecucaiones de Cauchy-Riemann para la funcion Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z\longmapsto\ 3z^3+2z .



Sean Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): A abierto en , y ,una funcion holomorfa en , entonces si se tiene.



(Ecuaciones de Cauchy-Riemann).




y .



donde:

y




Y




por tanto se cumplen las ecuaciones de Cauchy-Riemann.


--Josua Da Vinci 23:40 3 dic 2009 (UTC)




4.- Demuestre que la función no es holomorfa en ningún punto del plano.

Primero desarrollando como tenemos lo siguiente:

Ahora para mostrar que nuestra función no es holomorfa basta con probar que no se cumplen las Ecuaciones de Cauchy-Riemann

y

Calculando estas parciales tenemos que:

Donde es facil ver que

Para la otra igualdad calculamos las parciales

Y hacemos la comparación de la misma forma

Como se puede ver son distintas.

La función no es holomorfa en ningun punto del plano.

--Oscar Adrian 06:23 4 dic 2009 (UTC)


6.Encuentre un dominio de analiticidad para la funciòn y encuentre la derivada, donde log denota la rama de logaritmo


Para encontrar los punto de analiticidad, localizamos aquellos ddonde la funciòn no es analitica; es dexcir donde la funcion es real positiva, por tanto los puntos localizados se excluiràn del dominio.

Condiciòn:

Donde

se cumple excepto en

tomamos k=0




--Karla 16:56 4 dic 2009 (UTC)karla

EJERCICIOS 1.4.3

1. Interprete geometricamente la no conformalidad de la funcion en el origen.




Compleja:ej-cap1.1

Compleja:ej-cap1.2

Compleja:ej-cap1.3