Vibra: probs Finn

De luz-wiki

Introducción

Este es un apartado con algunos ejercicios extraídos del libro de Alonso y Finn, 'Física Volumen I: Mecánica'. Mautona97 (discusión) 16:46 16 jun 2020 (CDT)

EJERCICIO 12.5

Una partícula cuya masa es de 1g vibra con movimiento armónico simple de 2mm de aplitud. Su aceleración en el extremo de su recorrido es de $8*10^{3}ms^{-2}$. Calcula la frecuencia del movimiento y la velocidad de la partícula cuando pasa por la posición de equilibrio y cuando la elongación es de 1.2 mm. Escribir la ecuación que describe la fuerza en función de la posición y el tiempo.

Solución.

i) Para calcular la frecuencia, se tiene que

\[ m\frac{d^{2}x}{dt^{2}}=-kx, \] podemos despejar a k para obtener posteriormente la frecuencia a partir de la frecuencia angular y la masa. Por lo tanto:

\[ k=-\frac{ma}{x}\Rightarrow\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{-\frac{ma}{x}}{m}}=\sqrt{-\frac{a}{x}}=\sqrt{\frac{8*10^{3}\frac{m}{s^{2}}}{2*10^{-3}m}}=2*10^{3}\,{rad}*{s} ^{-1}. \]

Así la frecuencia está dada por

\[ f=\frac{\omega}{2\pi}\Rightarrow f=\frac{1}{\pi}*10^{3}\,{s}^{-1}. \]

ii) La velocidad de la partícula cuando pasa por la posición de equilibrio puede ser calculada a partir de la energía potencial inicial, dado que

\[ E_{P}=\frac{1}{2}kx^{2} \]

y en la posición de equilibrio

\[ E_{P}=E_{k}\Rightarrow\frac{1}{2}kx^{2}=\frac{1}{2}mv_{f}^{2}, \]

por lo tanto

\[ v_{f}=\sqrt{\frac{kx^{2}}{m}}\Rightarrow v_{f}=\sqrt{\frac{(4*10^{3}\frac{kg}{s^{2}})(2*10^{-3}{m})^{2}}{1*10^{-3}{kg}}}=4\frac{m}{s}. \]

Ahora bien, en la posición cuando la elongación es de 1.2 mm, la velocidad se puede observar como:

\[ \frac{1}{2}m(v_{f}^{2}-v_{0}^{2})=-\frac{1}{2}kx_{f}^{2}, \]

se tiene entonces

\[ v_{f}=\sqrt{v_{0}^{2}-\frac{k}{m}x^{2}}=\sqrt{v_{0}^{2}-\omega^{2}x^{2}}=\sqrt{(16\frac{m}{s})^{2}-(2*10^{3}{s^{-1}})^{2}(1.2*10^{-3}{m})^{2}}=3.2\,\frac{m}{s}. \]

iii) Para la ecuación de la fuerza, simplemente se tiene que, dada la función de posición

\[ x=A\sin(\omega t+\alpha)\Rightarrow a=-\omega^{2}A\sin(\omega t+\alpha), \]

por la ecuación de Newton

\[ F=m\frac{d^{2}x}{dt^{2}}=m(-\omega^{2}A\sin(\omega t+\alpha))=-kA\sin(\omega t+\alpha). \]

Sustituyendo todos los valores conocidos, concluimos que

\[ F=-8\sin((2*10^{3}{s^{-1}})t+\alpha)\,N. \] Mautona97 (discusión) 16:46 16 jun 2020 (CDT)