Diferencia entre revisiones de «Usuario discusión:Cecilia Carrizosa Muñoz»

De luz-wiki
Sin resumen de edición
Sin resumen de edición
 
Línea 186: Línea 186:
----
----


'''2.4) (Teorema de Rolle) Si <math>a,b \in\mathbb{R}</math> con <math> a<b</math> y <math> f:[a,b]\to\mathbb{R}</math> es continua, y además es derivable en (a,b), demuestre que si <math>f(a)=f(b)</math>, existe un <math>\xi\in(a,b)</math> donde <math>f</math> alcanza su máximo o mínimo.'''
'''2.4) (Teorema de Rolle) Si <math>a,b \in\mathbb{R}</math> con a<b y <math> f:[a,b]\to\mathbb{R}</math> es continua, y además es derivable en (a,b), demuestre que si <math>f(a)=f(b)</math>, existe un <math>\xi\in(a,b)</math> donde <math>f</math> alcanza su máximo o mínimo.'''
:Demostración:
:Demostración:
:Como f es continua en [a,b], entonces:
:Como f es continua en [a,b], entonces:
Línea 210: Línea 210:
:<math> \lim_{h\to 0} \frac{f(0+h)-f(0)}{h} =0</math>
:<math> \lim_{h\to 0} \frac{f(0+h)-f(0)}{h} =0</math>
:Si <math> h_{1}=h_{2}</math>
:Si <math> h_{1}=h_{2}</math>
:<math> \lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h_{1}\to 0} \frac{|h_{1}h_{2}|^{1/2}}{h_{1}+ih_{2}} = \lim_{h_{1}\to 0} \frac{|h_{1}^{2}|^{1/2}}{h_{1}+ih_{1}} = \lim_{h_{1}\to 0} \frac{|h_{1}|}{h_{1}+ih_{1}} = \frac{1}{1+i} \lim_{h_{1}\to 0} \frac{||h_{1}}{h_{1}}</math>
:<math> \lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h_{1}\to 0} \frac{|h_{1}h_{2}|^{1/2}}{h_{1}+ih_{2}} = \lim_{h_{1}\to 0} \frac{|h_{1}^{2}|^{1/2}}{h_{1}+ih_{1}} = \lim_{h_{1}\to 0} \frac{|h_{1}|}{h_{1}+ih_{1}} = \frac{1}{1+i} \lim_{h_{1}\to 0} \frac{||h_{1}|}{h_{1}}</math>
:entonces:
:entonces:
:<math> \lim_{h_{1}\to 0} \frac{|h_{1}|}{h_{1}}</math>
:faltaaa
:<math> \therefore \textrm{f(z) no es diferenciable en} z =0 </math>

Revisión actual - 03:35 25 nov 2012

1.5 Sean w,z ∈ C. Demuestre los siguientes incisos:

Sean entonces:
(1)
Solución:
(2)
Solución:
(3)
Solución:
(6) (es decir, un número complejo es un número real si y sólo si es igual a su conjugado).
Solución:
Sea , entonces:

1.9 Haga las operaciones indicadas y al final exprese el resultado en la forma a+bi

(a)


(b)


(c)


(d)


(e)


(f)


(g)


(h)

1.11 Muestre que las n raíces n-ésimas de 1 son los vértices de un n-ágono regular inscrito en el círculo unitario, uno de cuyos vértices es 1


y Diremos que z es una raíz n-ésima de la unidad si

i escribimos en la forma polar

Entonces, para que z sea raíz n-ésima de la unidad, debe cumplirse

y

Como es un número real, debe tenerse que r=1. La condición sobre es:

Obtenemos que todos los complejos de la forma son raíces n-ésimas de la unidad. ¿Cuántos números complejos cumplen esto? Elijamos {0,1,...,n-1), con . Entonces

Así, todos los posibles valores de dados anteriormente definen sólo n números complejos distintos: éstos son

(Error al representar (función desconocida «\nonumber»): r=0,1,...,{}\nonumber\\ )

Estos valores son las exactamente n raíces n-ésimas de la unidad. Podemos escribir las raíces n-ésimas de la unidad en la forma = Como multiplicar por w es un giro de amplitud , deducimos que las n raíces se obtienen girando la raíz n-ésima principal, (con =1), con giros sucesivos de amplitud cuando , corresponden a puntos situados en los vértices de un polígono regular de n lados. Este polígono esta inscrito en el círculo unitario centrado en el origen y tiene vértice en el punto correspondiente a la raíz z=1 (k=0). Si escribimos vemos que las distintas raíces n-ésimas de la unidad son simplemente

1,,,...,

1.17.- Demuestre que un semiplano cerrado es un conjunto cerrado

Demostración

Sea Debemos mostrar que hay una bola abierta contenida en el plano superior.

Sea se tiene entonces que . Elegimos consideremos la bola abierta B, sea se tiene entonces que . Es decir y queremos ver que y>0, procederemos por contradicción.

Primero supongamos que y=0 se tiene entonces que =

Esto es una contradicción.

Supongamos que y<0, entonces =

Esto es una contradicción

y el semiplano cerrado es un conjunto cerrado

1.29) Si es una sucesión convergente en , demuestre que su límite es único. Si y son dos sucesiones convergentes, con límites , respectivamente, demuestre que:

1)La suma de las sucesiones converge a
2)El producto de las sucesiones converge a
3)El cociente (cuando está definido) de las sucesiones converge a

Demostración

Primero demostraremos que el límite es único.
Supongamos que la sucesión tuviera dos límites distintos, digamos
Sea >0. Entonces, por definición, existen números naturales tales que si y si .
Llamando Error al representar (error de sintaxis): n_{0}=máx\{n_{1},n_{2}\} se debe cumplir que:

si y si . De donde se deduce que si n>n_{0} ha de ser

es una contradicción, entonces el límite es único.


1)Sea , existen enteros positivos y tales que si y si .

Tomando Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): n_{0}=máx\{n_{1},n_{2}\} se tiene:
para cada
Error al representar (error de sintaxis): \therefore a+b=lím_{n}(a_{n}+b_{n})


2) Sea una sucesión convergente, entonces existe un t.q.

Entonces
Sin embargo tal que
Entonces
tomando Error al representar (error de sintaxis): n_{0}= máx\{n_{1},n_{2}\} se tiene que Error al representar (error de sintaxis): ab = lím_{n}(a_{n}b_{n})


3)Consideremos una cota inferior para la sucesión en lugar de una acotación superior.

Puesto que 0 y |Error al representar (error de sintaxis): b|=lím_{n}|b_{n}| , sea existe tal que Error al representar (error de sintaxis): \\ \alpha:={\frac{|b|}{2}}<|b_{n}| , para .
Si , obtenemos:
Sea tal que:
Si tomamos debe cumplirse que
Para

1.69)Sea la distancia cordal. Demuestre que, en efecto, es una distancia, es decir, satisface las condiciones:

a)
b)
c)
Solución:
Para a)
Observemos que a),b),c) no toma valores negativos, entonces:
Para b)
usando b) y c) tenemos que:

2.4) (Teorema de Rolle) Si con a<b y es continua, y además es derivable en (a,b), demuestre que si , existe un donde alcanza su máximo o mínimo.

Demostración:
Como f es continua en [a,b], entonces:
Si entonces es constante y en este caso cualquier satisface Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f´(x_{0})=0
Si
pero si: Error al representar (error de sintaxis): f(x_{1}) \ne f(x_{2}) \Rightarrow f(x_{2})\ne f(a) \land f(x_{2})\ne f(b) \Rightarrow x_{2}\notin \{a,b\} \Rightarrow x_{2}\in (a,b) \textrm{ y } f´(x_{2})=0
Si Error al representar (error de sintaxis): x_{2}\in \{a,b\} \Rightarrow x_{1}\notin \{a,b\} x_{1}\in (a,b) \textrm{ y } f´(x_{1})=0



2.23) Muestre que la función no es diferenciable en el origen aunque satisface las ecuaciones de Cauchy-Riemann en 0.

Solución:
Tenemos que utilizando la definición de derivada parcial:
Se puede observar que:
Pero si , entonces:
Si
Si
entonces:
faltaaa