Diferencia entre revisiones de «Radiacion: reflexion y refraccion en conductores»

De luz-wiki
Línea 7: Línea 7:
Para un dieléctrico no hay electrones libres o de conducción y <math>\sigma = 0</math>, mientras que para los metales reales <math>\sigma </math> es diferente de cero y finita. En contraste un conductor ideal tendría una conductividad infinita. Esto equivale a decir que los electrones impulsados a oscilar por  una onda armónica, simplemente seguiría las alteraciones del campo. No habría fuerza de restarauracion, ni frecuencias naturales, ni absorción, solamente remisión. En metales reales los electrones de conducción sufren colisiones con la red agitada térmicamente o con imperfecciones y al hacerlo así convierten energía electromagnética de forma irreversible como calor de joule. La absorción de energia radiante de un material es una  función de su conductividad.
Para un dieléctrico no hay electrones libres o de conducción y <math>\sigma = 0</math>, mientras que para los metales reales <math>\sigma </math> es diferente de cero y finita. En contraste un conductor ideal tendría una conductividad infinita. Esto equivale a decir que los electrones impulsados a oscilar por  una onda armónica, simplemente seguiría las alteraciones del campo. No habría fuerza de restarauracion, ni frecuencias naturales, ni absorción, solamente remisión. En metales reales los electrones de conducción sufren colisiones con la red agitada térmicamente o con imperfecciones y al hacerlo así convierten energía electromagnética de forma irreversible como calor de joule. La absorción de energia radiante de un material es una  función de su conductividad.


== Ecuaciones de Maxwell para un medio metalico ==
== Aproximaciones ==


En un medio isótropo, homogéneo y constante; simbolizando la conductividad con σ, el campo eléctrico con ''' E'''y el magnético con '''B''' :
En un medio isótropo, homogéneo y constante; simbolizando la conductividad con σ, el campo eléctrico con ''' E'''y el magnético con '''B''' :

Revisión del 20:27 15 nov 2009

Concepto de medio conductor

La característica sobresaliente de los medios conductores es la presencia de un numero de cargas eléctricas libres, es decir que no están ligadas por lo tanto son capaces de circular por todas partes dentro del material. Para los metales estas cargas son por supuesto los electrones y su movimiento constituye una corriente. Los metales son medios isótropos que tienen como característica que su conductividad, sigma, es distinta de cero.

Para un dieléctrico no hay electrones libres o de conducción y , mientras que para los metales reales es diferente de cero y finita. En contraste un conductor ideal tendría una conductividad infinita. Esto equivale a decir que los electrones impulsados a oscilar por una onda armónica, simplemente seguiría las alteraciones del campo. No habría fuerza de restarauracion, ni frecuencias naturales, ni absorción, solamente remisión. En metales reales los electrones de conducción sufren colisiones con la red agitada térmicamente o con imperfecciones y al hacerlo así convierten energía electromagnética de forma irreversible como calor de joule. La absorción de energia radiante de un material es una función de su conductividad.

Aproximaciones

En un medio isótropo, homogéneo y constante; simbolizando la conductividad con σ, el campo eléctrico con Ey el magnético con B :


Las ecuaciones anteriores describen una onda con factores de atenuación dependientes de sigma que se propaga a una velocidad . Cuando la onda se propaga en el vacio sigma igual a cero y la ecuaciones de onda comun


Medios conductores

En esta imagen el lado izquierdo representa un medio dielectrico y el derecho el medio conductor, por lo que n1 es real y n2 es complejo .

Utilizando la informacion recolectada al estudiar la incidencia de un dielectrico/dielectrico podemos proponer el uso de la misma estructura en las ecuaciones mostradas en uno solo que ahora en el medio dos, que es donde la onda incide, utilizaremos vectores complejos, la razon de esto es que queremos que nuestra onda al entrar en el conductor sea amortiguada, cuya amplitud decae en direccion de K.


Incidencia normal

Incidencia oblicua:

perpendicular al plano

paralelo al plano deincidencia

En un medio conductor

perpendicular al plano

paralelo al plano deincidencia















Ecuaciones para el medio conductor