Diferencia entre revisiones de «Radiacion: campos retardados»

De luz-wiki
(Página creada con «== potenciales de Liénard-Wiechert == Los potenciales de Liénard-Wiechert son los potenciales escalar y vectorial producidos por una carga puntual en movimiento. El pote...»)
 
 
(No se muestran 25 ediciones intermedias de 2 usuarios)
Línea 1: Línea 1:
== potenciales de Liénard-Wiechert ==
== Potenciales de Liénard-Wiechert ==


Los potenciales de Liénard-Wiechert son los potenciales escalar y vectorial producidos por una carga puntual en movimiento. El potencial escalar esta dado por
Los potenciales de Liénard-Wiechert son los potenciales escalar y vectorial producidos por una carga puntual en movimiento. El potencial escalar esta dado por
Línea 21: Línea 21:
\]
\]


== derivadas temporales ==
== Derivadas temporales ==
=== derivada de la magnitud de R ===
 
=== Derivada de la magnitud de R ===
 
Puesto que $R=c\left(t-t_{r}\right)$, su derivada con respecto a
Puesto que $R=c\left(t-t_{r}\right)$, su derivada con respecto a
$t$ es
$t$ es
Línea 33: Línea 35:
\]
\]
al igualar éstas dos expresiones se obtiene
al igualar éstas dos expresiones se obtiene
\[
\[
c\left(1-\frac{\partial t_{r}}{\partial t}\right)=\frac{\partial R}{\partial t_{r}}\frac{\partial t_{r}}{\partial t}\quad\Rightarrow\quad\frac{\partial t_{r}}{\partial t}=\frac{1}{1+\frac{1}{c}\frac{\partial R}{\partial t_{r}}}
c\left(1-\frac{\partial t_{r}}{\partial t}\right)=\frac{\partial R}{\partial t_{r}}\frac{\partial t_{r}}{\partial t}\quad\Rightarrow\quad\frac{\partial t_{r}}{\partial t}=\frac{1}{1+\frac{1}{c}\frac{\partial R}{\partial t_{r}}}
\]
\]
puesto que $R^{2}=\mathbf{\mathbf{R}\cdot R}$ y la derivada de ésta
puesto que $R^{2}=\mathbf{\mathbf{R}\cdot R}$ y la derivada de ésta
ecuación con respecto a $t_{r}$ es  
ecuación con respecto a $t_{r}$ es  
Línea 41: Línea 45:
2R\frac{\partial R}{\partial t_{r}}=2\frac{\partial\mathbf{R}}{\partial t_{r}}\cdot\mathbf{R}=-2c\boldsymbol{\beta}\cdot\mathbf{R}\quad\Rightarrow
2R\frac{\partial R}{\partial t_{r}}=2\frac{\partial\mathbf{R}}{\partial t_{r}}\cdot\mathbf{R}=-2c\boldsymbol{\beta}\cdot\mathbf{R}\quad\Rightarrow
\]
\]
\begin{equation}
\[
\frac{\partial R}{\partial t_{r}}=-c\boldsymbol{\beta}\cdot\hat{\mathbf{n}}.\label{eq: der R en tr}
\frac{\partial R}{\partial t_{r}}=-c\boldsymbol{\beta}\cdot\hat{\mathbf{n}}.\label{eq: der R en tr}
\end{equation}
\]
de manera que
de manera que
\begin{equation}
 
\[
\frac{\partial t_{r}}{\partial t}=\frac{1}{1-\boldsymbol{\beta}\cdot\hat{\mathbf{n}}}\label{eq: der t ret en t}
\frac{\partial t_{r}}{\partial t}=\frac{1}{1-\boldsymbol{\beta}\cdot\hat{\mathbf{n}}}\label{eq: der t ret en t}
\end{equation}
\]
 
y la derivada de $R$ con respecto a $t$ es
y la derivada de $R$ con respecto a $t$ es
\begin{equation}
 
\[
\frac{\partial R}{\partial t}=\frac{-c\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}.\label{eq: der R en t}
\frac{\partial R}{\partial t}=\frac{-c\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}.\label{eq: der R en t}
\end{equation}
\]


\subsubsection{derivada del vector R}
=== Derivada del vector R ===


La derivada del vector $\mathbf{R}$ con respecto a $t$ es
La derivada del vector $\mathbf{R}$ con respecto a $t$ es
\begin{equation}
\[
\frac{\partial\mathbf{R}}{\partial t}=\frac{\partial\mathbf{R}}{\partial t_{r}}\frac{\partial t_{r}}{\partial t}=-c\boldsymbol{\beta}\frac{1}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}.\label{eq: der R vec en t}
\frac{\partial\mathbf{R}}{\partial t}=\frac{\partial\mathbf{R}}{\partial t_{r}}\frac{\partial t_{r}}{\partial t}=-c\boldsymbol{\beta}\frac{1}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}.\label{eq: der R vec en t}
\end{equation}
\]


\subsubsection{derivada del vector unitario}
=== Derivada del vector unitario ===


La derivada temporal del vector que une a carga y observador es
La derivada temporal del vector que une a carga y observador es
Línea 67: Línea 74:
\]
\]
que puede escribirse como
que puede escribirse como
\begin{equation}
\[
\frac{\partial\hat{\mathbf{n}}}{\partial t}=\frac{c}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}-\boldsymbol{\beta}\right]\label{eq: der n en t}
\frac{\partial\hat{\mathbf{n}}}{\partial t}=\frac{c}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}-\boldsymbol{\beta}\right]\label{eq: der n en t}
\end{equation}
\]
 
=== Derivada de la velocidad ===
\subsubsection{derivada de la velocidad}


Finalmente, la derivada temporal de la velocidad de la carga es
Finalmente, la derivada temporal de la velocidad de la carga es
\begin{equation}
\[
\frac{\partial\boldsymbol{\beta}}{\partial t}=\frac{\partial\boldsymbol{\beta}}{\partial t_{r}}\frac{\partial t_{r}}{\partial t}=\frac{\dot{\boldsymbol{\beta}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\label{eq: der beta}
\frac{\partial\boldsymbol{\beta}}{\partial t}=\frac{\partial\boldsymbol{\beta}}{\partial t_{r}}\frac{\partial t_{r}}{\partial t}=\frac{\dot{\boldsymbol{\beta}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\label{eq: der beta}
\end{equation}
\]


\subsection{derivadas espaciales}
== Derivadas espaciales ==


\subsubsection{gradiente de la magnitud R}
=== Gradiente de la magnitud R ===


Calculemos el gradiente de $R$
Calculemos el gradiente de $R$
\begin{equation}
\[
\nabla R\left(t_{r}\right)=-c\nabla t_{r}\label{eq: grad r grat tr}
\nabla R\left(t_{r}\right)=-c\nabla t_{r}\label{eq: grad r grat tr}
\end{equation}
\]


\[
\[
Línea 107: Línea 113:
\]
\]
de manera que se obtiene
de manera que se obtiene
\begin{equation}
\[
\nabla R=\frac{\hat{\mathbf{n}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}.\label{eq: grad R}
\nabla R=\frac{\hat{\mathbf{n}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}.\label{eq: grad R}
\end{equation}
\]
 
=== Gradiente de $\boldsymbol{\beta}\cdot\hat{\mathbf{n}}$===


\subsubsection{gradiente de $\boldsymbol{\beta}\cdot\hat{\mathbf{n}}$}


El gradiente del producto es
El gradiente del producto es
Línea 158: Línea 165:
\]
\]


\section{Campos retardados}
== Campos retardados ==
 
El campo eléctrico en términos de los potenciales es
El campo eléctrico en términos de los potenciales es
\[
\[
Línea 169: Línea 175:


Evaluemos los distintos términos,
Evaluemos los distintos términos,
 
=== Gradiente ===
\subsection{gradiente}
 
El término gradiente es entonces
El término gradiente es entonces
\[
\[
Línea 180: Línea 184:
\frac{e}{\varepsilon}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\nabla\left(\frac{1}{R}\right)=\frac{e}{\varepsilon}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\left(\frac{-1}{R^{2}}\right)\frac{\hat{\mathbf{n}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}=-\frac{e}{\varepsilon R^{2}}\frac{\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}
\frac{e}{\varepsilon}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\nabla\left(\frac{1}{R}\right)=\frac{e}{\varepsilon}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\left(\frac{-1}{R^{2}}\right)\frac{\hat{\mathbf{n}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}=-\frac{e}{\varepsilon R^{2}}\frac{\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}
\]
\]
\begin{equation}
 
\[
\frac{e}{\varepsilon}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\nabla\left(\frac{1}{R}\right)=-\frac{e}{\varepsilon R^{2}}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: pri ter grad phi}
\frac{e}{\varepsilon}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\nabla\left(\frac{1}{R}\right)=-\frac{e}{\varepsilon R^{2}}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: pri ter grad phi}
\end{equation}
\]
mientras que el segundo término es
mientras que el segundo término es
\begin{equation}
\[
\frac{e}{\varepsilon R}\frac{\nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}=\frac{e}{\varepsilon R^{2}}\frac{-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}.\label{eq: seg ter grad phi}
\frac{e}{\varepsilon R}\frac{\nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}=\frac{e}{\varepsilon R^{2}}\frac{-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}.\label{eq: seg ter grad phi}
\end{equation}
\]
Agrupando términos de (\ref{eq: pri ter grad phi}) y (\ref{eq: seg ter grad phi})
Agrupando términos de (\ref{eq: pri ter grad phi}) y (\ref{eq: seg ter grad phi})
\[
\[
\left.\nabla\phi\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(-1+\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}\right\}  
\left.\nabla\phi\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(-1+\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}\right\}  
\]
\]
\[
\[
\left.\nabla\phi\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(-1+\beta^{2}\right)\hat{\mathbf{n}}+\left(-\boldsymbol{\beta}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}\right\}  
\left.\nabla\phi\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(-1+\beta^{2}\right)\hat{\mathbf{n}}+\left(-\boldsymbol{\beta}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}\right\}  
\]
\]
\begin{equation}
 
\left.\nabla\phi\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{-1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\left[1-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\right]\boldsymbol{\beta}\right\} \label{eq: grad phi vel}
\[\left.\nabla\phi\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{-1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\left[1-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\right]\boldsymbol{\beta}\right\} \label{eq: grad phi vel}
\end{equation}
\]
\begin{equation}
 
\[
\left.\nabla\phi\right|_{acel}=-\frac{e}{\varepsilon cR}\frac{\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: grad phi acel}
\left.\nabla\phi\right|_{acel}=-\frac{e}{\varepsilon cR}\frac{\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: grad phi acel}
\end{equation}
\]


\subsection{derivada temporal}
=== Derivada temporal ===
La derivada temporal del potencial vectorial es


La derivada temporal del potencial vectorial es
\[
\[
\frac{d}{dt}\left(\frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)=\left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial R}{\partial t}+\left(\frac{\mu c}{R}\frac{e}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial\boldsymbol{\beta}}{\partial t}+\left(\frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}\right)\frac{\partial\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}{\partial t}
\frac{d}{dt}\left(\frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)=\left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial R}{\partial t}+\left(\frac{\mu c}{R}\frac{e}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial\boldsymbol{\beta}}{\partial t}+\left(\frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}\right)\frac{\partial\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}{\partial t}
Línea 211: Línea 218:
\left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial R}{\partial t}=\left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{-c\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}
\left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial R}{\partial t}=\left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{-c\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}
\]
\]
\begin{equation}
 
\[
\left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial R}{\partial t}=\frac{\mu c^{2}e}{R^{2}}\frac{\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}\label{eq: primer der t}
\left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial R}{\partial t}=\frac{\mu c^{2}e}{R^{2}}\frac{\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}\label{eq: primer der t}
\end{equation}
\]
mientras que el segundo término utilizando (\ref{eq: der beta}) es
mientras que el segundo término utilizando (\ref{eq: der beta}) es
\begin{equation}
 
\[
\left(\frac{\mu c}{R}\frac{e}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial\boldsymbol{\beta}}{\partial t}=\left(\frac{\mu c}{R}\frac{e}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\dot{\boldsymbol{\beta}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}=\frac{\mu ce}{R}\frac{\dot{\boldsymbol{\beta}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}\label{eq: segundo der t}
\left(\frac{\mu c}{R}\frac{e}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial\boldsymbol{\beta}}{\partial t}=\left(\frac{\mu c}{R}\frac{e}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\dot{\boldsymbol{\beta}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}=\frac{\mu ce}{R}\frac{\dot{\boldsymbol{\beta}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}\label{eq: segundo der t}
\end{equation}
\]
 
la derivada temporal del producto punto en el último término con (\ref{eq: der n en t})
la derivada temporal del producto punto en el último término con (\ref{eq: der n en t})
y (\ref{eq: der beta}) es
y (\ref{eq: der beta}) es
Línea 228: Línea 238:
\]
\]
que puede reescribirse como
que puede reescribirse como
\begin{equation}
 
\[
\left(\frac{\mu ce}{R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\right)\left\{ R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+c\left[\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)^{2}-\beta^{2}\right]\boldsymbol{\beta}\right\} .\label{eq: tercer der t}
\left(\frac{\mu ce}{R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\right)\left\{ R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+c\left[\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)^{2}-\beta^{2}\right]\boldsymbol{\beta}\right\} .\label{eq: tercer der t}
\end{equation}
\]
 
La derivada temporal de (\ref{eq: primer der t}), (\ref{eq: segundo der t})
La derivada temporal de (\ref{eq: primer der t}), (\ref{eq: segundo der t})
y (\ref{eq: tercer der t}) es
y (\ref{eq: tercer der t}) es
Línea 236: Línea 248:
\frac{\partial\mathbf{A}}{\partial t}=\frac{\mu c^{2}e}{R^{2}}\frac{\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}+\frac{\mu ce}{R}\frac{\dot{\boldsymbol{\beta}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}+\left(\frac{\mu ec}{R^{2}}\frac{R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+c\left[\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)^{2}-\beta^{2}\right]\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\right)
\frac{\partial\mathbf{A}}{\partial t}=\frac{\mu c^{2}e}{R^{2}}\frac{\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}+\frac{\mu ce}{R}\frac{\dot{\boldsymbol{\beta}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}+\left(\frac{\mu ec}{R^{2}}\frac{R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+c\left[\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)^{2}-\beta^{2}\right]\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\right)
\]
\]
\[
\[
=\frac{\mu ce\left[c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+c\left[\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)^{2}-\beta^{2}\right]\boldsymbol{\beta}\right]}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
=\frac{\mu ce\left[c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+c\left[\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)^{2}-\beta^{2}\right]\boldsymbol{\beta}\right]}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\]
\]
\[
\[
\frac{\partial\mathbf{A}}{\partial t}=\frac{\mu ce\left[c\left(\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right)\boldsymbol{\beta}+R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right]}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\frac{\partial\mathbf{A}}{\partial t}=\frac{\mu ce\left[c\left(\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right)\boldsymbol{\beta}+R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right]}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\]
\]
que podemos agrupar en dos partes vinculadas con velocidades y aceleraciones
que podemos agrupar en dos partes vinculadas con velocidades y aceleraciones
\begin{equation}
 
\[
\left.\frac{\partial\mathbf{A}}{\partial t}\right|_{vel}=\frac{\mu c^{2}e}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right]\boldsymbol{\beta}\label{eq: der A en t vel}
\left.\frac{\partial\mathbf{A}}{\partial t}\right|_{vel}=\frac{\mu c^{2}e}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right]\boldsymbol{\beta}\label{eq: der A en t vel}
\end{equation}
\]
\begin{equation}
 
\[
\left.\frac{\partial\mathbf{A}}{\partial t}\right|_{acel}=\frac{\mu ce}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left[\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right]\label{eq: der A en t acel}
\left.\frac{\partial\mathbf{A}}{\partial t}\right|_{acel}=\frac{\mu ce}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left[\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right]\label{eq: der A en t acel}
\end{equation}
\]


\subsection{términos en E de velocidad}
=== Términos en E de velocidad ===
Los potenciales involucrando velocidades son


Los potenciales involucrando velocidades son
\[
\[
\left.\mathbf{E}\right|_{vel}=-\left.\nabla\phi\right|_{vel}-\left.\frac{\partial\mathbf{A}}{\partial t}\right|_{vel},
\left.\mathbf{E}\right|_{vel}=-\left.\nabla\phi\right|_{vel}-\left.\frac{\partial\mathbf{A}}{\partial t}\right|_{vel},
\]
\]
de las expresiones (\ref{eq: grad phi vel}) y (\ref{eq: der A en t vel}),
de las expresiones (\ref{eq: grad phi vel}) y (\ref{eq: der A en t vel}),
se obtiene
se obtiene
\[
\[
\left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\left[1-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\right]\boldsymbol{\beta}\right\} -\frac{\mu c^{2}e\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right]\boldsymbol{\beta}}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\left[1-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\right]\boldsymbol{\beta}\right\} -\frac{\mu c^{2}e\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right]\boldsymbol{\beta}}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\]
\]
y puesto que $1/\varepsilon=\mu c^{2}$ se puede factorizar
y puesto que $1/\varepsilon=\mu c^{2}$ se puede factorizar
\[
\[
\left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\left[1-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\right]\boldsymbol{\beta}-\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right]\boldsymbol{\beta}\right\}  
\left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\left[1-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\right]\boldsymbol{\beta}-\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right]\boldsymbol{\beta}\right\}  
\]
\]
\[
\[
\left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\boldsymbol{\beta}+\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\boldsymbol{\beta}-\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+\beta^{2}\boldsymbol{\beta}\right\}  
\left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\boldsymbol{\beta}+\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\boldsymbol{\beta}-\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+\beta^{2}\boldsymbol{\beta}\right\}  
\]
\]
\begin{equation}
 
\[
\left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\left(\hat{\mathbf{n}}-\boldsymbol{\beta}\right)\right\} \label{eq: E vel}
\left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\left(\hat{\mathbf{n}}-\boldsymbol{\beta}\right)\right\} \label{eq: E vel}
\end{equation}
\]
 
\subsection{términos en E de aceleración}


=== Términos en E de aceleración ===
La aceleración
La aceleración
\[
\[
\left.\mathbf{E}\right|_{acel}=-\left.\nabla\phi\right|_{acel}-\left.\frac{\partial\mathbf{A}}{\partial t}\right|_{acel}
\left.\mathbf{E}\right|_{acel}=-\left.\nabla\phi\right|_{acel}-\left.\frac{\partial\mathbf{A}}{\partial t}\right|_{acel}
\]
\]
\[
\[
\left.\mathbf{E}\right|_{acel}=\frac{e}{\varepsilon cR}\frac{\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}-\frac{\mu ce}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left[\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right]
\left.\mathbf{E}\right|_{acel}=\frac{e}{\varepsilon cR}\frac{\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}-\frac{\mu ce}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left[\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right]
\]
\]
si $1/c\varepsilon=\mu c$ que es correcto pues implica $1/\mu\varepsilon=c^{2}$
si $1/c\varepsilon=\mu c$ que es correcto pues implica $1/\mu\varepsilon=c^{2}$
\[
\[
\left.\mathbf{E}\right|_{acel}=\frac{e}{\varepsilon cR}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}-\left[\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right]\right\}  
\left.\mathbf{E}\right|_{acel}=\frac{e}{\varepsilon cR}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}-\left[\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right]\right\}  
\]
\]
\begin{equation}
 
\[
\left.\mathbf{E}\right|_{acel}=\frac{e}{\varepsilon cR}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\left(\hat{\mathbf{n}}-\boldsymbol{\beta}\right)-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\right\} \label{eq: E acel}
\left.\mathbf{E}\right|_{acel}=\frac{e}{\varepsilon cR}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\left(\hat{\mathbf{n}}-\boldsymbol{\beta}\right)-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\right\} \label{eq: E acel}
\end{equation}
\]
 
El término entre corchetes se puede escribir como
El término entre corchetes se puede escribir como
\[
\[
\left(\mathbf{\hat{\mathbf{n}}}\cdot\dot{\boldsymbol{\beta}}\right)\left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}=\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} ,
\left(\mathbf{\hat{\mathbf{n}}}\cdot\dot{\boldsymbol{\beta}}\right)\left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}=\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} ,
\]
\]
pues $\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} =\mathbf{\hat{\mathbf{n}}}\times\left(\mathbf{\hat{\mathbf{n}}}\times\dot{\boldsymbol{\beta}}\right)-\mathbf{\hat{\mathbf{n}}}\times\left(\boldsymbol{\beta}\times\dot{\boldsymbol{\beta}}\right)$,
pues $\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} =\mathbf{\hat{\mathbf{n}}}\times\left(\mathbf{\hat{\mathbf{n}}}\times\dot{\boldsymbol{\beta}}\right)-\mathbf{\hat{\mathbf{n}}}\times\left(\boldsymbol{\beta}\times\dot{\boldsymbol{\beta}}\right)$,
y cada triple producto puede desarrollarse como $\mathbf{\hat{\mathbf{n}}}\times\left(\mathbf{\hat{\mathbf{n}}}\times\dot{\boldsymbol{\beta}}\right)=\left(\mathbf{\hat{\mathbf{n}}}\cdot\dot{\boldsymbol{\beta}}\right)\mathbf{\hat{\mathbf{n}}}-\dot{\boldsymbol{\beta}}$
y cada triple producto puede desarrollarse como $\mathbf{\hat{\mathbf{n}}}\times\left(\mathbf{\hat{\mathbf{n}}}\times\dot{\boldsymbol{\beta}}\right)=\left(\mathbf{\hat{\mathbf{n}}}\cdot\dot{\boldsymbol{\beta}}\right)\mathbf{\hat{\mathbf{n}}}-\dot{\boldsymbol{\beta}}$
y $\mathbf{\hat{\mathbf{n}}}\times\left(\boldsymbol{\beta}\times\dot{\boldsymbol{\beta}}\right)=\left(\mathbf{\hat{\mathbf{n}}}\cdot\dot{\boldsymbol{\beta}}\right)\boldsymbol{\beta}-\left(\mathbf{\hat{\mathbf{n}}}\cdot\boldsymbol{\beta}\right)\dot{\boldsymbol{\beta}}$.
y $\mathbf{\hat{\mathbf{n}}}\times\left(\boldsymbol{\beta}\times\dot{\boldsymbol{\beta}}\right)=\left(\mathbf{\hat{\mathbf{n}}}\cdot\dot{\boldsymbol{\beta}}\right)\boldsymbol{\beta}-\left(\mathbf{\hat{\mathbf{n}}}\cdot\boldsymbol{\beta}\right)\dot{\boldsymbol{\beta}}$.
El término acelerado se escribe como
El término acelerado se escribe como
\begin{equation}
 
\[
\mathbf{E}_{acel}=\frac{e}{\varepsilon c}\left[\frac{\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} }{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R}\right]_{ret}.\label{eq: E lenard acel}
\mathbf{E}_{acel}=\frac{e}{\varepsilon c}\left[\frac{\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} }{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R}\right]_{ret}.\label{eq: E lenard acel}
\end{equation}
\]


\subsection{campo eléctrico completo}
=== Campo eléctrico completo ===


De las ecuaciones (\ref{eq: E vel}) y (\ref{eq: E lenard acel})
De las ecuaciones (\ref{eq: E vel}) y (\ref{eq: E lenard acel})
se obtiene
se obtiene
\begin{equation}
 
\[
\mathbf{E}=\frac{e}{\varepsilon}\left[\frac{\left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\left(1-\beta^{2}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R^{2}}\right]_{ret}+\frac{e}{\varepsilon c}\left[\frac{\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} }{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R}\right]_{ret}.\label{eq: E lenard}
\mathbf{E}=\frac{e}{\varepsilon}\left[\frac{\left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\left(1-\beta^{2}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R^{2}}\right]_{ret}+\frac{e}{\varepsilon c}\left[\frac{\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} }{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R}\right]_{ret}.\label{eq: E lenard}
\end{equation}
\]


\section{campo magnético}
== Campo magnético ==


El campo magnético está dado por
El campo magnético está dado por
\[
\[
\mathbf{B}=\nabla\times\mathbf{A}=\nabla\times\left\{ \frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\}  
\mathbf{B}=\nabla\times\mathbf{A}=\nabla\times\left\{ \frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\}  
\]
\]
y
y
\[
\[
\nabla\times\left\{ \frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} =\nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \times\boldsymbol{\beta}+\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \nabla\times\boldsymbol{\beta}
\nabla\times\left\{ \frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} =\nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \times\boldsymbol{\beta}+\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \nabla\times\boldsymbol{\beta}
\]
\]
El primer término es del gradiente de (\ref{eq: pri ter grad phi})
El primer término es del gradiente de (\ref{eq: pri ter grad phi})
es
es
\begin{equation}
 
\[
\frac{\mu ce}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\nabla\left(\frac{1}{R}\right)=-\frac{\mu ce}{R^{2}}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: pri ter grad A}
\frac{\mu ce}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\nabla\left(\frac{1}{R}\right)=-\frac{\mu ce}{R^{2}}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: pri ter grad A}
\end{equation}
\]
 
mientras que el segundo de (\ref{eq: seg ter grad phi}) es
mientras que el segundo de (\ref{eq: seg ter grad phi}) es
\begin{equation}
 
\[
\frac{\mu ce}{R}\frac{\nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}=\frac{\mu ce}{R^{2}}\frac{-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}.\label{eq: seg ter grad A}
\frac{\mu ce}{R}\frac{\nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}=\frac{\mu ce}{R^{2}}\frac{-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}.\label{eq: seg ter grad A}
\end{equation}
\]
 
de manera que el término gradiente es
de manera que el término gradiente es
\[
\[
\nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} =\frac{\mu ce}{R^{2}}\frac{-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} =\frac{\mu ce}{R^{2}}\frac{-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\]
\]
que se puede simplificar a
que se puede simplificar a
\[
\[
\nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} =\frac{\mu ce}{R^{2}}\frac{-\hat{\mathbf{n}}-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\boldsymbol{\beta}+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} =\frac{\mu ce}{R^{2}}\frac{-\hat{\mathbf{n}}-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\boldsymbol{\beta}+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\]
\]
y al evaluar el producto cruz
y al evaluar el producto cruz
\[
\[
\nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \times\boldsymbol{\beta}=\frac{\mu ce}{R^{2}}\frac{-\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)+\beta^{2}\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \times\boldsymbol{\beta}=\frac{\mu ce}{R^{2}}\frac{-\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)+\beta^{2}\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\]
\]
que puede escribirse como
que puede escribirse como
\begin{equation}
 
\[
\nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \times\boldsymbol{\beta}=\frac{\mu ce}{R^{2}}\frac{-\left(1-\beta^{2}\right)\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: ter grad A}
\nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \times\boldsymbol{\beta}=\frac{\mu ce}{R^{2}}\frac{-\left(1-\beta^{2}\right)\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: ter grad A}
\end{equation}
\]
 
Por otro lado, el segundo término que involucra al rotacional de la
Por otro lado, el segundo término que involucra al rotacional de la
velocidad
velocidad
\[
\[
\nabla\times\boldsymbol{\beta}=\left(\frac{\partial\beta_{z}}{\partial y}-\frac{\partial\beta_{y}}{\partial z}\right)\hat{i}+\left(\frac{\partial\beta_{x}}{\partial z}-\frac{\partial\beta_{z}}{\partial x}\right)\hat{j}+\left(\frac{\partial\beta_{y}}{\partial x}-\frac{\partial\beta_{x}}{\partial y}\right)\hat{k}
\nabla\times\boldsymbol{\beta}=\left(\frac{\partial\beta_{z}}{\partial y}-\frac{\partial\beta_{y}}{\partial z}\right)\hat{i}+\left(\frac{\partial\beta_{x}}{\partial z}-\frac{\partial\beta_{z}}{\partial x}\right)\hat{j}+\left(\frac{\partial\beta_{y}}{\partial x}-\frac{\partial\beta_{x}}{\partial y}\right)\hat{k}
\]
\]
\[
\[
\nabla\times\boldsymbol{\beta}=\left(\dot{\beta}_{z}\frac{\partial t_{r}}{\partial y}-\dot{\beta}_{y}\frac{\partial t_{r}}{\partial z}\right)\hat{i}+\left(\dot{\beta}_{x}\frac{\partial t_{r}}{\partial z}-\dot{\beta}_{z}\frac{\partial t_{r}}{\partial x}\right)\hat{j}+\left(\dot{\beta}_{y}\frac{\partial t_{r}}{\partial x}-\dot{\beta}_{x}\frac{\partial t_{r}}{\partial y}\right)\hat{k}
\nabla\times\boldsymbol{\beta}=\left(\dot{\beta}_{z}\frac{\partial t_{r}}{\partial y}-\dot{\beta}_{y}\frac{\partial t_{r}}{\partial z}\right)\hat{i}+\left(\dot{\beta}_{x}\frac{\partial t_{r}}{\partial z}-\dot{\beta}_{z}\frac{\partial t_{r}}{\partial x}\right)\hat{j}+\left(\dot{\beta}_{y}\frac{\partial t_{r}}{\partial x}-\dot{\beta}_{x}\frac{\partial t_{r}}{\partial y}\right)\hat{k}
\]
\]
pero este resultado no es sino el producto cruz de la derivada de $\beta$ por el gradiente de $t_{r}$
\[
\[
\nabla\times\boldsymbol{\beta}=-\dot{\boldsymbol{\beta}}\times\nabla t_{r}
\nabla\times\boldsymbol{\beta}=-\dot{\boldsymbol{\beta}}\times\nabla t_{r}
\]
\]
puesto que
 
\[
\begin{array}{ccc}
\dot{\beta}_{x} & \dot{\beta}_{y} & \dot{\beta}_{z}\\
\frac{\partial t_{r}}{\partial x} & \frac{\partial t_{r}}{\partial y} & \frac{\partial t_{r}}{\partial z}\\
\hat{i} & \hat{j} & \hat{k}
\end{array}
\]
Se sustituye el valor de $\nabla t_{r}$
Se sustituye el valor de $\nabla t_{r}$
\[
\[
\nabla t_{r}=\frac{-\nabla R}{c}=\frac{-\hat{\mathbf{n}}}{c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}
\nabla t_{r}=\frac{-\nabla R}{c}=\frac{-\hat{\mathbf{n}}}{c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}
\]
\]
de manera que el rotacional de la velocidad es
de manera que el rotacional de la velocidad es
\[
\[
\nabla\times\boldsymbol{\beta}=\frac{\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}
\nabla\times\boldsymbol{\beta}=\frac{\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}
\]
\]
El segundo término es entonces
El segundo término es entonces
\[
\[
\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \nabla\times\boldsymbol{\beta}=\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \frac{\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}
\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \nabla\times\boldsymbol{\beta}=\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \frac{\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}
\]
\]
que puede reescribirse como
que puede reescribirse como
\begin{equation}
 
\[
\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \nabla\times\boldsymbol{\beta}=\frac{\mu e}{R}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: ter cruz Beta}
\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \nabla\times\boldsymbol{\beta}=\frac{\mu e}{R}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: ter cruz Beta}
\end{equation}
\]
 
Recopilando los términos (\ref{eq: ter grad A}) y (\ref{eq: ter cruz Beta})
Recopilando los términos (\ref{eq: ter grad A}) y (\ref{eq: ter cruz Beta})
obtenemos el campo magnético
obtenemos el campo magnético
\[
\[
\frac{\mu ce}{R^{2}}\frac{-\left(1-\beta^{2}\right)\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}+\frac{\mu e}{R}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\frac{\mu ce}{R^{2}}\frac{-\left(1-\beta^{2}\right)\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}+\frac{\mu e}{R}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\]
\]
=== términos en B de velocidad ===
Si se agrupan los términos de velocidad


\subsection{términos en B de velocidad}
\[
 
Si se agrupan los términos de velocidad
\begin{equation}
\left.\mathbf{B}\right|_{vel}=\frac{\mu ce}{R^{2}}\frac{\left(1-\beta^{2}\right)\left(\boldsymbol{\beta}\times\hat{\mathbf{n}}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: B vel lenard}
\left.\mathbf{B}\right|_{vel}=\frac{\mu ce}{R^{2}}\frac{\left(1-\beta^{2}\right)\left(\boldsymbol{\beta}\times\hat{\mathbf{n}}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: B vel lenard}
\end{equation}
\]
=== términos en B de aceleración ===
Mientras que los términos de aceleración son


\subsection{términos en B de aceleración}
Mientras que los términos de aceleración son
\[
\[
\left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}-\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}-\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\]
\]
que puede reescribirse como
que puede reescribirse como
\[
\[
\left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}\times\dot{\boldsymbol{\beta}}-\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}\times\dot{\boldsymbol{\beta}}-\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\]
\]
\begin{equation}
 
\[
\left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\hat{\mathbf{n}}\times\left[-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}-\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\boldsymbol{\beta}\right]}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: B acel lenard}
\left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\hat{\mathbf{n}}\times\left[-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}-\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\boldsymbol{\beta}\right]}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: B acel lenard}
\end{equation}
\]
 
añado un término $\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}$
añado un término $\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}$
que por el producto cruz es cero
que por el producto cruz es cero
\[
\[
\left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\hat{\mathbf{n}}\times\left[-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\left(\hat{\mathbf{n}}-\boldsymbol{\beta}\right)\right]}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\hat{\mathbf{n}}\times\left[-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\left(\hat{\mathbf{n}}-\boldsymbol{\beta}\right)\right]}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\]
\]
y el término entre paréntesis cuadrados es igual al triple producto
y el término entre paréntesis cuadrados es igual al triple producto
cruz
cruz
\[
\[
\left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\hat{\mathbf{n}}\times\left[\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} \right]}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\hat{\mathbf{n}}\times\left[\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} \right]}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}
\]
\]
Entonces la relación entre el campo magnético y eléctrico es
Entonces la relación entre el campo magnético y eléctrico es
\[
\[
\mathbf{B}=\frac{1}{c}\left[\mathbf{\hat{\mathbf{n}}}\times\mathbf{E}\right]_{ret}
\mathbf{B}=\frac{1}{c}\left[\mathbf{\hat{\mathbf{n}}}\times\mathbf{E}\right]_{ret}
\]
\]
puesto que $\mu c=1/\varepsilon c$ y $\mu=1/\varepsilon c^{2}$.
puesto que $\mu c=1/\varepsilon c$ y $\mu=1/\varepsilon c^{2}$.
Los campos son entonces siempre ortogonales. Al agrupar los términos
Los campos son entonces siempre ortogonales. Al agrupar los términos
del campo magnético se obtiene
del campo magnético se obtiene
\begin{equation}
 
\[
\mathbf{B}=\mu ce\left[\frac{\left(\boldsymbol{\beta}\times\mathbf{\hat{\mathbf{n}}}\right)\left(1-\beta^{2}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R^{2}}\right]_{ret}+\mu e\left[\frac{\mathbf{\hat{\mathbf{n}}}\times\left(\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} \right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R}\right]_{ret}.\label{eq: B lenard}
\mathbf{B}=\mu ce\left[\frac{\left(\boldsymbol{\beta}\times\mathbf{\hat{\mathbf{n}}}\right)\left(1-\beta^{2}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R^{2}}\right]_{ret}+\mu e\left[\frac{\mathbf{\hat{\mathbf{n}}}\times\left(\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} \right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R}\right]_{ret}.\label{eq: B lenard}
\end{equation}
\]
 
[[categoría:Radiacion]]
[[categoría:Cursos]]

Revisión actual - 18:47 23 sep 2023

Potenciales de Liénard-Wiechert

Los potenciales de Liénard-Wiechert son los potenciales escalar y vectorial producidos por una carga puntual en movimiento. El potencial escalar esta dado por \[ \phi\left(\mathbf{r},t\right)=\frac{1}{\varepsilon R\left(t_{r}\right)}\frac{e}{\left[1-\boldsymbol{\beta}\left(t_{r}\right)\cdot\mathbf{\hat{\mathbf{n}}}\left(t_{r}\right)\right]}.\label{eq: phi lenard n} \]

Mientras que el potencial vectorial, puesto que $\mathbf{J}=\rho c\boldsymbol{\beta}$, es

\[ \mathbf{A}\left(\mathbf{r},t\right)=\frac{\mu c}{R\left(t_{r}\right)}\frac{e\boldsymbol{\beta}\left(t_{r}\right)}{\left[1-\boldsymbol{\beta}\left(t_{r}\right)\cdot\mathbf{\hat{\mathbf{n}}}\left(t_{r}\right)\right]}.\label{eq: A lenard n} \] donde \[ \hat{\mathbf{n}}\equiv\frac{\mathbf{R}}{\left|\mathbf{R}\right|},\qquad R\equiv\left|\mathbf{R}\right|, \]

si además se define \[ \boldsymbol{\beta}\equiv\frac{1}{c}\frac{d\mathbf{r}_{e}\left(t_{r}\right)}{dt_{r}}=-\frac{1}{c}\frac{\partial\mathbf{R}}{\partial t_{r}},\qquad\mathbf{R}\equiv\mathbf{r}\left(t\right)-\mathbf{r}_{e}\left(t_{r}\right).\label{eq: vel en c} \]

Derivadas temporales

Derivada de la magnitud de R

Puesto que $R=c\left(t-t_{r}\right)$, su derivada con respecto a $t$ es \[ \frac{\partial R}{\partial t}=c\left(1-\frac{\partial t_{r}}{\partial t}\right), \] por otro lado, usando la regla de la cadena \[ \frac{\partial R}{\partial t}=\frac{\partial R}{\partial t_{r}}\frac{\partial t_{r}}{\partial t}; \] al igualar éstas dos expresiones se obtiene

\[ c\left(1-\frac{\partial t_{r}}{\partial t}\right)=\frac{\partial R}{\partial t_{r}}\frac{\partial t_{r}}{\partial t}\quad\Rightarrow\quad\frac{\partial t_{r}}{\partial t}=\frac{1}{1+\frac{1}{c}\frac{\partial R}{\partial t_{r}}} \]

puesto que $R^{2}=\mathbf{\mathbf{R}\cdot R}$ y la derivada de ésta ecuación con respecto a $t_{r}$ es \[ 2R\frac{\partial R}{\partial t_{r}}=2\frac{\partial\mathbf{R}}{\partial t_{r}}\cdot\mathbf{R}=-2c\boldsymbol{\beta}\cdot\mathbf{R}\quad\Rightarrow \] \[ \frac{\partial R}{\partial t_{r}}=-c\boldsymbol{\beta}\cdot\hat{\mathbf{n}}.\label{eq: der R en tr} \] de manera que

\[ \frac{\partial t_{r}}{\partial t}=\frac{1}{1-\boldsymbol{\beta}\cdot\hat{\mathbf{n}}}\label{eq: der t ret en t} \]

y la derivada de $R$ con respecto a $t$ es

\[ \frac{\partial R}{\partial t}=\frac{-c\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}.\label{eq: der R en t} \]

Derivada del vector R

La derivada del vector $\mathbf{R}$ con respecto a $t$ es \[ \frac{\partial\mathbf{R}}{\partial t}=\frac{\partial\mathbf{R}}{\partial t_{r}}\frac{\partial t_{r}}{\partial t}=-c\boldsymbol{\beta}\frac{1}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}.\label{eq: der R vec en t} \]

Derivada del vector unitario

La derivada temporal del vector que une a carga y observador es \[ \frac{\partial\hat{\mathbf{n}}}{\partial t}=\frac{\partial}{\partial t}\left(\frac{\mathbf{R}}{R}\right)=-\frac{\mathbf{R}}{R^{2}}\frac{\partial R}{\partial t}+\frac{1}{R}\frac{\partial\mathbf{R}}{\partial t}=-\frac{\hat{\mathbf{n}}}{R}\left(\frac{-c\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)-\frac{1}{R}\frac{c\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}} \] que puede escribirse como \[ \frac{\partial\hat{\mathbf{n}}}{\partial t}=\frac{c}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}-\boldsymbol{\beta}\right]\label{eq: der n en t} \]

Derivada de la velocidad

Finalmente, la derivada temporal de la velocidad de la carga es \[ \frac{\partial\boldsymbol{\beta}}{\partial t}=\frac{\partial\boldsymbol{\beta}}{\partial t_{r}}\frac{\partial t_{r}}{\partial t}=\frac{\dot{\boldsymbol{\beta}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\label{eq: der beta} \]

Derivadas espaciales

Gradiente de la magnitud R

Calculemos el gradiente de $R$ \[ \nabla R\left(t_{r}\right)=-c\nabla t_{r}\label{eq: grad r grat tr} \]

\[ \nabla R=\frac{\nabla\left[\left(x-x_{e}\right)^{2}+\left(y-y_{e}\right)^{2}+\left(z-z_{e}\right)^{2}\right]}{2\sqrt{\left(x-x_{e}\right)^{2}+\left(y-y_{e}\right)^{2}+\left(z-z_{e}\right)^{2}}} \]

\[ \nabla R=\frac{\left(x-x_{e}\right)\nabla\left(x-x_{e}\right)+\left(y-y_{e}\right)\nabla\left(y-y_{e}\right)+\left(z-z_{e}\right)\nabla\left(z-z_{e}\right)}{R} \] \[ \nabla R=\frac{\mathbf{R}}{R}+\frac{\left(x-x_{e}\right)\nabla\left(-x_{e}\right)+\left(y-y_{e}\right)\nabla\left(-y_{e}\right)+\left(z-z_{e}\right)\nabla\left(-z_{e}\right)}{R} \] pero $\frac{\partial x_{e}}{\partial x}=\frac{\partial x_{e}}{\partial t_{r}}\frac{\partial t_{r}}{\partial x}=c\beta_{x}\frac{\partial t_{r}}{\partial x}$, $\frac{\partial x_{e}}{\partial y}=\frac{\partial x_{e}}{\partial t_{r}}\frac{\partial t_{r}}{\partial y}=c\beta_{x}\frac{\partial t_{r}}{\partial y}$, etcétera, de manera que \[ \nabla R=\frac{\mathbf{R}}{R}+\frac{-\left(x-x_{e}\right)c\beta_{x}\nabla t_{r}-\left(y-y_{e}\right)c\beta_{y}\nabla t_{r}-\left(z-z_{e}\right)c\beta_{z}\nabla t_{r}}{R} \] \[ \nabla R=\frac{\mathbf{R}}{R}+\frac{c\mathbf{R}\cdot\boldsymbol{\beta}\nabla t_{r}}{R}=\hat{\mathbf{n}}-c\hat{\mathbf{n}}\cdot\boldsymbol{\beta}\nabla t_{r}=\hat{\mathbf{n}}+c\hat{\mathbf{n}}\cdot\boldsymbol{\beta}\frac{\nabla R}{c} \] de manera que se obtiene \[ \nabla R=\frac{\hat{\mathbf{n}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}.\label{eq: grad R} \]

Gradiente de $\boldsymbol{\beta}\cdot\hat{\mathbf{n}}$

El gradiente del producto es \[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)=\left(\boldsymbol{\beta}\cdot\nabla\right)\mathbf{\hat{\mathbf{n}}}+\left(\mathbf{\hat{\mathbf{n}}}\cdot\nabla\right)\boldsymbol{\beta}+\mathbf{\hat{\mathbf{n}}}\times\nabla\times\boldsymbol{\beta}+\boldsymbol{\beta}\times\nabla\times\hat{\mathbf{n}} \] o de plano calcular por componentes \[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)=\nabla\left(\boldsymbol{\beta}\cdot\frac{\mathbf{R}}{R}\right)=\left(\boldsymbol{\beta}\cdot\mathbf{R}\right)\nabla\left(\frac{1}{R}\right)+\frac{1}{R}\nabla\left(\boldsymbol{\beta}\cdot\mathbf{R}\right) \] y del cálculo por componentes \[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{R}\right)=\sum_{j}\frac{\partial}{\partial r_{j}}\hat{e}_{j}\sum_{k}\left[\beta_{k}\left(r_{k}-r_{ek}\right)\right] \] \[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{R}\right)=\sum_{j}\sum_{k}\frac{\partial\beta_{k}}{\partial r_{j}}\left(r_{k}-r_{ek}\right)\hat{e}_{j}+\sum_{j}\sum_{k}\beta_{k}\left(\frac{\partial r_{k}}{\partial r_{j}}-\frac{\partial r_{ek}}{\partial r_{j}}\right)\hat{e}_{j} \] \[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{R}\right)=\sum_{j}\sum_{k}\frac{\partial\beta_{k}}{\partial t_{r}}\frac{\partial t_{r}}{\partial r_{j}}\left(r_{k}-r_{ek}\right)\hat{e}_{j}+\sum_{j}\sum_{k}\beta_{k}\frac{\partial r_{k}}{\partial r_{j}}\hat{e}_{j}-\sum_{j}\sum_{k}\beta_{k}\frac{\partial r_{ek}}{\partial t_{r}}\frac{\partial t_{r}}{\partial r_{j}}\hat{e}_{j} \] \[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{R}\right)=\sum_{j}\left[\sum_{k}\frac{\partial\beta_{k}}{\partial t_{r}}\left(r_{k}-r_{ek}\right)\right]\frac{\partial t_{r}}{\partial r_{j}}\hat{e}_{j}+\sum_{j}\sum_{j}\beta_{j}\frac{\partial r_{j}}{\partial r_{j}}\hat{e}_{j}-\sum_{j}\left[\sum_{k}\beta_{k}\frac{\partial r_{ek}}{\partial t_{r}}\right]\frac{\partial t_{r}}{\partial r_{j}}\hat{e}_{j} \] pero $\frac{\partial\beta_{k}}{\partial t_{r}}=\dot{\beta}_{k}$, $\frac{\partial r_{ek}}{\partial t_{r}}=c\beta_{k}$ \[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{R}\right)=\mathbf{\dot{\boldsymbol{\beta}}}\cdot\mathbf{R}\sum_{j}\frac{\partial t_{r}}{\partial r_{j}}\hat{e}_{j}+\boldsymbol{\beta}-c\beta^{2}\sum_{j}\frac{\partial t_{r}}{\partial r_{j}}\hat{e}_{j} \] y recordando que $\sum_{j}\frac{\partial t_{r}}{\partial r_{j}}\hat{e}_{j}=\nabla t_{r}=\frac{-\nabla R}{c}$

\[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{R}\right)=\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\mathbf{R}-c\beta^{2}\right)\left(\frac{-\nabla R}{c}\right)+\boldsymbol{\beta} \] de manera que \[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)=\left(\boldsymbol{\beta}\cdot\mathbf{R}\right)\left(\frac{-1}{R^{2}}\right)\nabla R+\frac{1}{R}\left[\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\mathbf{R}-c\beta^{2}\right)\left(\frac{-\nabla R}{c}\right)+\boldsymbol{\beta}\right] \] \[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)=\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\left(\frac{-1}{R}\right)\frac{\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}+\frac{1}{R}\left[\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\mathbf{R}-c\beta^{2}\right)\left(\frac{-\hat{\mathbf{n}}}{c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\right)+\boldsymbol{\beta}\right] \] \[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)=\frac{1}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\left\{ -\hat{\mathbf{n}}\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\left(R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)-c\beta^{2}\right)\left(\frac{-\hat{\mathbf{n}}}{c}\right)+\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right\} \] \[ \nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)=\frac{1}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\left\{ -\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\left(\frac{R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{c}\right)\right\} \]

Campos retardados

El campo eléctrico en términos de los potenciales es \[ \mathbf{E}=-\nabla\phi-\frac{\partial\mathbf{\mathbf{A}}}{\partial t}=-\nabla\left(\frac{1}{\varepsilon R}\frac{e}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\right)-\frac{d}{dt}\left(\frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\right). \] donde los operadores gradiente y derivada temporal se evalúan en el punto de observación puesto que los campos se desean conocer en ese punto.

Evaluemos los distintos términos,

Gradiente

El término gradiente es entonces \[ \nabla\left(\frac{1}{\varepsilon R}\frac{e}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\right)=\frac{e}{\varepsilon}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\nabla\left(\frac{1}{R}\right)+\frac{e}{\varepsilon R}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}\nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right). \] el primer término \[ \frac{e}{\varepsilon}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\nabla\left(\frac{1}{R}\right)=\frac{e}{\varepsilon}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\left(\frac{-1}{R^{2}}\right)\frac{\hat{\mathbf{n}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}=-\frac{e}{\varepsilon R^{2}}\frac{\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}} \]

\[ \frac{e}{\varepsilon}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\nabla\left(\frac{1}{R}\right)=-\frac{e}{\varepsilon R^{2}}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: pri ter grad phi} \] mientras que el segundo término es \[ \frac{e}{\varepsilon R}\frac{\nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}=\frac{e}{\varepsilon R^{2}}\frac{-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}.\label{eq: seg ter grad phi} \] Agrupando términos de (\ref{eq: pri ter grad phi}) y (\ref{eq: seg ter grad phi}) \[ \left.\nabla\phi\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(-1+\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}\right\} \]

\[ \left.\nabla\phi\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(-1+\beta^{2}\right)\hat{\mathbf{n}}+\left(-\boldsymbol{\beta}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}\right\} \]

\[\left.\nabla\phi\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{-1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\left[1-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\right]\boldsymbol{\beta}\right\} \label{eq: grad phi vel} \]

\[ \left.\nabla\phi\right|_{acel}=-\frac{e}{\varepsilon cR}\frac{\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: grad phi acel} \]

Derivada temporal

La derivada temporal del potencial vectorial es

\[ \frac{d}{dt}\left(\frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)=\left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial R}{\partial t}+\left(\frac{\mu c}{R}\frac{e}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial\boldsymbol{\beta}}{\partial t}+\left(\frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}\right)\frac{\partial\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}{\partial t} \] el primer término con (\ref{eq: der R en t}) es \[ \left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial R}{\partial t}=\left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{-c\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}} \]

\[ \left(-\frac{\mu c}{R^{2}}\frac{e\boldsymbol{\beta}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial R}{\partial t}=\frac{\mu c^{2}e}{R^{2}}\frac{\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}\label{eq: primer der t} \] mientras que el segundo término utilizando (\ref{eq: der beta}) es

\[ \left(\frac{\mu c}{R}\frac{e}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\partial\boldsymbol{\beta}}{\partial t}=\left(\frac{\mu c}{R}\frac{e}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}\right)\frac{\dot{\boldsymbol{\beta}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}=\frac{\mu ce}{R}\frac{\dot{\boldsymbol{\beta}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}\label{eq: segundo der t} \]

la derivada temporal del producto punto en el último término con (\ref{eq: der n en t}) y (\ref{eq: der beta}) es \[ \frac{\partial\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}{\partial t}=\frac{\partial\boldsymbol{\beta}}{\partial t}\cdot\mathbf{\hat{\mathbf{n}}}+\boldsymbol{\beta}\cdot\frac{\partial\mathbf{\hat{\mathbf{n}}}}{\partial t}=\frac{\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}+\frac{c\left[\left(\hat{\mathbf{n}}\cdot\boldsymbol{\beta}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)-\boldsymbol{\beta}\cdot\boldsymbol{\beta}\right]}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)} \] de manera que el último término es \[ \left(\frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}\right)\left\{ \frac{\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}}{1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}}+\frac{c\left[\left(\hat{\mathbf{n}}\cdot\boldsymbol{\beta}\right)^{2}-\beta^{2}\right]}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\right\} \] que puede reescribirse como

\[ \left(\frac{\mu ce}{R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\right)\left\{ R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+c\left[\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)^{2}-\beta^{2}\right]\boldsymbol{\beta}\right\} .\label{eq: tercer der t} \]

La derivada temporal de (\ref{eq: primer der t}), (\ref{eq: segundo der t}) y (\ref{eq: tercer der t}) es \[ \frac{\partial\mathbf{A}}{\partial t}=\frac{\mu c^{2}e}{R^{2}}\frac{\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}+\frac{\mu ce}{R}\frac{\dot{\boldsymbol{\beta}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}+\left(\frac{\mu ec}{R^{2}}\frac{R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+c\left[\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)^{2}-\beta^{2}\right]\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\right) \]

\[ =\frac{\mu ce\left[c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+c\left[\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)^{2}-\beta^{2}\right]\boldsymbol{\beta}\right]}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}} \]

\[ \frac{\partial\mathbf{A}}{\partial t}=\frac{\mu ce\left[c\left(\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right)\boldsymbol{\beta}+R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+R\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right]}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}} \] que podemos agrupar en dos partes vinculadas con velocidades y aceleraciones

\[ \left.\frac{\partial\mathbf{A}}{\partial t}\right|_{vel}=\frac{\mu c^{2}e}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right]\boldsymbol{\beta}\label{eq: der A en t vel} \]

\[ \left.\frac{\partial\mathbf{A}}{\partial t}\right|_{acel}=\frac{\mu ce}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left[\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right]\label{eq: der A en t acel} \]

Términos en E de velocidad

Los potenciales involucrando velocidades son

\[ \left.\mathbf{E}\right|_{vel}=-\left.\nabla\phi\right|_{vel}-\left.\frac{\partial\mathbf{A}}{\partial t}\right|_{vel}, \]

de las expresiones (\ref{eq: grad phi vel}) y (\ref{eq: der A en t vel}), se obtiene

\[ \left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\left[1-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\right]\boldsymbol{\beta}\right\} -\frac{\mu c^{2}e\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right]\boldsymbol{\beta}}{R^{2}\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}} \]

y puesto que $1/\varepsilon=\mu c^{2}$ se puede factorizar

\[ \left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\left[1-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\right]\boldsymbol{\beta}-\left[\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)-\beta^{2}\right]\boldsymbol{\beta}\right\} \]

\[ \left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\hat{\mathbf{n}}-\boldsymbol{\beta}+\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\boldsymbol{\beta}-\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}+\beta^{2}\boldsymbol{\beta}\right\} \]

\[ \left.\mathbf{E}\right|_{vel}=\frac{e}{\varepsilon R^{2}}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(1-\beta^{2}\right)\left(\hat{\mathbf{n}}-\boldsymbol{\beta}\right)\right\} \label{eq: E vel} \]

Términos en E de aceleración

La aceleración \[ \left.\mathbf{E}\right|_{acel}=-\left.\nabla\phi\right|_{acel}-\left.\frac{\partial\mathbf{A}}{\partial t}\right|_{acel} \]

\[ \left.\mathbf{E}\right|_{acel}=\frac{e}{\varepsilon cR}\frac{\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}-\frac{\mu ce}{R\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left[\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right] \]

si $1/c\varepsilon=\mu c$ que es correcto pues implica $1/\mu\varepsilon=c^{2}$

\[ \left.\mathbf{E}\right|_{acel}=\frac{e}{\varepsilon cR}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}-\left[\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\dot{\boldsymbol{\beta}}\cdot\mathbf{\hat{\mathbf{n}}}\right)\boldsymbol{\beta}\right]\right\} \]

\[ \left.\mathbf{E}\right|_{acel}=\frac{e}{\varepsilon cR}\frac{1}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\left\{ \left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\left(\hat{\mathbf{n}}-\boldsymbol{\beta}\right)-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\right\} \label{eq: E acel} \]

El término entre corchetes se puede escribir como \[ \left(\mathbf{\hat{\mathbf{n}}}\cdot\dot{\boldsymbol{\beta}}\right)\left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}=\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} , \]

pues $\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} =\mathbf{\hat{\mathbf{n}}}\times\left(\mathbf{\hat{\mathbf{n}}}\times\dot{\boldsymbol{\beta}}\right)-\mathbf{\hat{\mathbf{n}}}\times\left(\boldsymbol{\beta}\times\dot{\boldsymbol{\beta}}\right)$, y cada triple producto puede desarrollarse como $\mathbf{\hat{\mathbf{n}}}\times\left(\mathbf{\hat{\mathbf{n}}}\times\dot{\boldsymbol{\beta}}\right)=\left(\mathbf{\hat{\mathbf{n}}}\cdot\dot{\boldsymbol{\beta}}\right)\mathbf{\hat{\mathbf{n}}}-\dot{\boldsymbol{\beta}}$ y $\mathbf{\hat{\mathbf{n}}}\times\left(\boldsymbol{\beta}\times\dot{\boldsymbol{\beta}}\right)=\left(\mathbf{\hat{\mathbf{n}}}\cdot\dot{\boldsymbol{\beta}}\right)\boldsymbol{\beta}-\left(\mathbf{\hat{\mathbf{n}}}\cdot\boldsymbol{\beta}\right)\dot{\boldsymbol{\beta}}$.

El término acelerado se escribe como

\[ \mathbf{E}_{acel}=\frac{e}{\varepsilon c}\left[\frac{\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} }{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R}\right]_{ret}.\label{eq: E lenard acel} \]

Campo eléctrico completo

De las ecuaciones (\ref{eq: E vel}) y (\ref{eq: E lenard acel}) se obtiene

\[ \mathbf{E}=\frac{e}{\varepsilon}\left[\frac{\left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\left(1-\beta^{2}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R^{2}}\right]_{ret}+\frac{e}{\varepsilon c}\left[\frac{\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} }{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R}\right]_{ret}.\label{eq: E lenard} \]

Campo magnético

El campo magnético está dado por

\[ \mathbf{B}=\nabla\times\mathbf{A}=\nabla\times\left\{ \frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \]

y

\[ \nabla\times\left\{ \frac{\mu c}{R}\frac{e\boldsymbol{\beta}}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} =\nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \times\boldsymbol{\beta}+\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \nabla\times\boldsymbol{\beta} \]

El primer término es del gradiente de (\ref{eq: pri ter grad phi}) es

\[ \frac{\mu ce}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}\nabla\left(\frac{1}{R}\right)=-\frac{\mu ce}{R^{2}}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: pri ter grad A} \]

mientras que el segundo de (\ref{eq: seg ter grad phi}) es

\[ \frac{\mu ce}{R}\frac{\nabla\left(\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{2}}=\frac{\mu ce}{R^{2}}\frac{-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}.\label{eq: seg ter grad A} \]

de manera que el término gradiente es

\[ \nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} =\frac{\mu ce}{R^{2}}\frac{-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}-\left(\boldsymbol{\beta}+\hat{\mathbf{n}}\right)\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}} \]

que se puede simplificar a

\[ \nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} =\frac{\mu ce}{R^{2}}\frac{-\hat{\mathbf{n}}-\left(\boldsymbol{\beta}\cdot\hat{\mathbf{n}}\right)\boldsymbol{\beta}+\boldsymbol{\beta}+\beta^{2}\hat{\mathbf{n}}-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}} \]

y al evaluar el producto cruz

\[ \nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \times\boldsymbol{\beta}=\frac{\mu ce}{R^{2}}\frac{-\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)+\beta^{2}\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}} \]

que puede escribirse como

\[ \nabla\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \times\boldsymbol{\beta}=\frac{\mu ce}{R^{2}}\frac{-\left(1-\beta^{2}\right)\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: ter grad A} \]

Por otro lado, el segundo término que involucra al rotacional de la velocidad

\[ \nabla\times\boldsymbol{\beta}=\left(\frac{\partial\beta_{z}}{\partial y}-\frac{\partial\beta_{y}}{\partial z}\right)\hat{i}+\left(\frac{\partial\beta_{x}}{\partial z}-\frac{\partial\beta_{z}}{\partial x}\right)\hat{j}+\left(\frac{\partial\beta_{y}}{\partial x}-\frac{\partial\beta_{x}}{\partial y}\right)\hat{k} \]

\[ \nabla\times\boldsymbol{\beta}=\left(\dot{\beta}_{z}\frac{\partial t_{r}}{\partial y}-\dot{\beta}_{y}\frac{\partial t_{r}}{\partial z}\right)\hat{i}+\left(\dot{\beta}_{x}\frac{\partial t_{r}}{\partial z}-\dot{\beta}_{z}\frac{\partial t_{r}}{\partial x}\right)\hat{j}+\left(\dot{\beta}_{y}\frac{\partial t_{r}}{\partial x}-\dot{\beta}_{x}\frac{\partial t_{r}}{\partial y}\right)\hat{k} \]

pero este resultado no es sino el producto cruz de la derivada de $\beta$ por el gradiente de $t_{r}$ \[ \nabla\times\boldsymbol{\beta}=-\dot{\boldsymbol{\beta}}\times\nabla t_{r} \]

Se sustituye el valor de $\nabla t_{r}$

\[ \nabla t_{r}=\frac{-\nabla R}{c}=\frac{-\hat{\mathbf{n}}}{c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)} \]

de manera que el rotacional de la velocidad es

\[ \nabla\times\boldsymbol{\beta}=\frac{\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)} \]

El segundo término es entonces

\[ \left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \nabla\times\boldsymbol{\beta}=\left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \frac{\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{c\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)} \]

que puede reescribirse como

\[ \left\{ \frac{\mu c}{R}\frac{e}{\left[1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right]}\right\} \nabla\times\boldsymbol{\beta}=\frac{\mu e}{R}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: ter cruz Beta} \]

Recopilando los términos (\ref{eq: ter grad A}) y (\ref{eq: ter cruz Beta}) obtenemos el campo magnético

\[ \frac{\mu ce}{R^{2}}\frac{-\left(1-\beta^{2}\right)\left(\hat{\mathbf{n}}\times\boldsymbol{\beta}\right)-\frac{1}{c}R\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}+\frac{\mu e}{R}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}} \]

términos en B de velocidad

Si se agrupan los términos de velocidad

\[ \left.\mathbf{B}\right|_{vel}=\frac{\mu ce}{R^{2}}\frac{\left(1-\beta^{2}\right)\left(\boldsymbol{\beta}\times\hat{\mathbf{n}}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: B vel lenard} \]

términos en B de aceleración

Mientras que los términos de aceleración son

\[ \left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}\times\hat{\mathbf{n}}-\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}} \]

que puede reescribirse como

\[ \left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\hat{\mathbf{n}}\times\dot{\boldsymbol{\beta}}-\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\times\boldsymbol{\beta}}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}} \]

\[ \left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\hat{\mathbf{n}}\times\left[-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}-\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\boldsymbol{\beta}\right]}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}}\label{eq: B acel lenard} \]

añado un término $\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}$ que por el producto cruz es cero

\[ \left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\hat{\mathbf{n}}\times\left[-\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)\dot{\boldsymbol{\beta}}+\left(\mathbf{\dot{\boldsymbol{\beta}}}\cdot\hat{\mathbf{n}}\right)\left(\hat{\mathbf{n}}-\boldsymbol{\beta}\right)\right]}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}} \]

y el término entre paréntesis cuadrados es igual al triple producto cruz

\[ \left.\mathbf{B}\right|_{acel}=\frac{\mu e}{R}\frac{\hat{\mathbf{n}}\times\left[\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} \right]}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}} \]

Entonces la relación entre el campo magnético y eléctrico es

\[ \mathbf{B}=\frac{1}{c}\left[\mathbf{\hat{\mathbf{n}}}\times\mathbf{E}\right]_{ret} \]

puesto que $\mu c=1/\varepsilon c$ y $\mu=1/\varepsilon c^{2}$. Los campos son entonces siempre ortogonales. Al agrupar los términos del campo magnético se obtiene

\[ \mathbf{B}=\mu ce\left[\frac{\left(\boldsymbol{\beta}\times\mathbf{\hat{\mathbf{n}}}\right)\left(1-\beta^{2}\right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R^{2}}\right]_{ret}+\mu e\left[\frac{\mathbf{\hat{\mathbf{n}}}\times\left(\mathbf{\hat{\mathbf{n}}}\times\left\{ \left(\mathbf{\hat{\mathbf{n}}}-\boldsymbol{\beta}\right)\times\dot{\boldsymbol{\beta}}\right\} \right)}{\left(1-\boldsymbol{\beta}\cdot\mathbf{\hat{\mathbf{n}}}\right)^{3}R}\right]_{ret}.\label{eq: B lenard} \]