Ondas: probs c7

De luz-wiki

vibraciones y ondas problemas capítulo 7 Óptica - Hecht


3.1/7.1 Determine la resultante de la superposicion de las ondas paralelas.



cuando y


Sustituyendo en:


Obtenemos.


Se pueden sumar como ondas de la misma frecuencia, entonces la amplitud resultante es:



y la fase es:


Etonces la fase:


Entonces la onda resultante.

--Daniela López Martínez (discusión) 20:56 6 jul 2013 (CDT)


3.2/7.2


3.4/7.4

Demuestre que la longitud de camino óptico, definido como la suma de los productos de varios índices multiplicados por los espesores de los medios atravesados por un haz, es decir, ${\displaystyle \sum n_{i}x_{i}}$, equivale a la longitud del recorrido en el vacío que el haz tardaría el mismo tiempo en atravesar.

Solución:

Sea la longitud de camino óptico $L.C.O.=\sum n_{i}x_{i}$, si sabemos que el índice de refracción es $n=\frac{c}{v}$, con c la velocidad de la luz en el vacío y v la velocidad de la luz en un medio, podemos sustituir en nuestra primera ecuación.

$L.C.O.=\sum\frac{c}{v_{i}}x_{i}$

$L.C.O.=\sum\frac{ct_{i}}{x_{i}}x_{i}$

$L.C.O.=\sum ct_{i}$

que es justamente la longitud del recorrido en el vacío que la luz tardaría en ese tiempo en atravesar.

--Edgar Ortega Roano (discusión) 12:36 25 mar 2014 (CDT)


3.6/7.6. Determine la diferencia de camino óptico para las dos ondas A y B cuyas longitudes de onda en el vacío, ilustradas en la figura P.7.6, son ambas de 500 nm; el tanque de vidrio ($n=1.52$) se llena con agua ($n=1.33$). Si las ondas comienzan en fase y todos los números anteriores son exactos, encuentre su diferencia de fase relativa en la línea de meta.

Tenemos que la longitud de camino óptico para cada onda (A y B) es:

\[ LCO_{B}=(1)_{aire}(100cm)=1m \]


\[ LCO_{A}=(1)_{aire}(89cm)+(1.52)_{vidrio}(2)(0.5cm)+(1.33)_{agua}(10cm)=103.8cm=1.038m \]


Restando los caminos ópticos tendremos que:

\[ \Lambda=LCO_{A}-LCO_{B}=1.038m-1m=0.038m \]


Para hallar la diferencia de fase relativa tendremos que:

\[ \delta=k_{0}\Lambda=\left(\frac{2\pi}{\lambda_{0}}\right)\Lambda=\frac{2\pi\left(3.82x10^{-3}m\right)}{5x10^{-9}m}=7.64x10^{6}\pi \]


por lo cual, la diferencia de fase es:

\[ \delta=7.64x10^{6}\pi \]

Cesar Ivan Avila Vasquez 22:21 26 Marzo 2014


3.7/7.7 Usando las ecuaciones:




Demostrar la resultante de las dos ondas.



es:


Sustituyendo en la primera relacion tenemos:


Tras simplificar obetenemos.


Utilizando una relacion trigonometrica.



Sacando raices de ambosl lados.


Ahora en el caso de la fase.


De aqui, factorizamos del denominador un campo y este se hace uno con el campo del numerador


Utilizamos en el denominador 1. y en el numerador. y sustituimos.


Tras simplificar.


Por definicion de tangente.


Ahora por la ultima ecuacion el campo.

--Andrés Arturo Cerón Téllez ([[Usuario discusión:Andrés Arturo Cerón Téllez|discusión]]) 00:55 6 jul 2013 (CDT)


En este problema la primera parte de la solución es correcta, pero la segunda no, aqui se coloca la parte restante, y como lo realice:

7.7. Usando las ecuaciones (7.9), (7.10) y (7.11) demuestre que la resultante de las ondas

\[ E_{1}=E_{01}sen\left[wt-k(x+\Delta x)\right] \]


y \[ E_{2}=E_{01}sen\left(wt-kx\right) \]


es \[ E=2E_{01}cos\left(\frac{k\Delta x}{2}\right)sen\left[wt-k\left(x+\frac{\Delta x}{2}\right)\right] \]


Primero, definamos las siguientes variables como $\alpha_{1}=-k(x+\Delta x)$ y $\alpha_{2}=-kx$, luego tendremos que:

\[ E_{1}=E_{01}sen(et+\alpha_{1}) \]

y 

\[ E_{2}=E_{01}sen(wt+\alpha_{2}) \]


Asi, aplicando la ecuación (7.9) tendremos que:

\[ E_{0}^{2}=E_{01}^{2}+E_{01}^{2}+2E_{01}^{2}\left(cos\alpha_{1}cos\alpha_{2}+sen\alpha_{1}sen\alpha_{2}\right) \]


Factorizando tenemos:

\[ E_{0}^{2}=2E_{01}^{2}\left(1+cos\alpha_{1}cos\alpha_{2}+sen\alpha_{1}sen\alpha_{2}\right) \]


\[ E_{0}^{2}=2E_{01}^{2}\left(1+cos\left(\alpha_{2}-\alpha_{1}\right)\right) \]


Haciendo $\alpha=\alpha_{2}-\alpha_{1}$

Usando la indentidad $\left(1+cos\alpha\right)=2cos\left(\frac{\alpha}{2}\right)$ tendremos:

\[ E_{0}^{2}=2E_{01}^{2}\left(2cos^{2}\left(\frac{\alpha}{2}\right)\right)=4E_{01}^{2}cos^{2}\left(\frac{\alpha_{2}-\alpha_{1}}{2}\right) \]


Finalmente:

\[ E_{0}^{2}=E_{01}^{2}cos^{2}\left(\frac{k\Delta x}{2}\right) \]


\[ E_{0}=E_{01}cos\left(\frac{k\Delta x}{2}\right) \]


Luego, para hallar $\alpha$ usemos (7.10)

\[ tan\alpha=\frac{E_{01}sen\alpha_{1}+E_{01}sen\alpha_{2}}{E_{01}cos\alpha_{1}+E_{01}cos\alpha_{2}} \]


Realizando las operaciones pertinentes tendremos que:

\[ tan\alpha=\frac{sen\left(-kx-\frac{k\Delta x}{2}\right)}{cos\left(-kx-\frac{k\Delta x}{2}\right)}=tan\left(-kx-\frac{k\Delta x}{2}\right) \]


\[ \Rightarrow\alpha=-kx-\frac{k\Delta x}{2} \]


\[ \alpha=-k\left(x+\frac{\Delta x}{2}\right) \]


Por último, sustituyendo estos datos en la ecuación (7.11) tendremos:

\[ E=2E_{01}cos\left(\frac{k\Delta x}{2}\right)sen\left[wt-k\left(x+\frac{\Delta x}{2}\right)\right] \]

Cesar Ivan Avila Vasquez 22:13 26 Marzo 2014


3.8/7.8

Sume directamente las dos ondas del problema 7.7 para encontrar la ecuación (7.17)

Las ondas del problema anterior son:

y:


Hacemos la suma directamente :


Desarrollamos el primer seno usando la regla trigonometrica de la suma de ángulos:

Desarrollamos


Factorizamos del primer y último término el seno de la fase:


Utilizando las relaciones trigonométricas de los problemas anteriores se obtienen las siguientes expresiones para el seno y coseno:



Las ecuaciones de las ondas se ven como sigue:


Si se factoriza un coseno de la mitad del ángulo y el coeficiente dos se tiene la siguiente ecuación de onda:


Arreglando la suma de ángulos del seno se tiene:


que corresponde a la ecuación (7.17).


Brenda Pérez Vidal (discusión) 18:34 27 mar 2014 (UTC)


3.9/7.9

Use la representacion compleja para calcular la resultante de , donde



Y describa la onda compuesta.

Aplicando el metodo complejo



Entonces, la suma de ambas es:



Dado que


Entonces.


Desarrollando “



Por tanto.


De esa forma se describe la onda compuesta, Siendo así que la onda es armónica y de la misma frecuencia que las constitutivas aunque su amplitud y fase son diferentes.

Mario Moranchel (discusión) 03:42 26 mar 2014 (UTC)


3.10/7.10. El campo electrico de una onda electromagnética estacionaria plana viene dado por \begin{equation} E(x,t)=2E_{0}sen(kx)cos(\omega t) \end{equation} Deduzca una expresion para $B(x,t)$.


Dado.

\begin{equation} \frac{\partial E}{\partial t}=-\frac{\partial B}{\partial t} \end{equation}

Se busca una funcion de B dependiente de x y de t entonces Integrando para obtener


\begin{equation} B(x,t)=-\int \frac{\partial E}{\partial x}dt \end{equation}


\begin{equation} -\int \frac{\partial E}{\partial x}dt=-2E_{0}kcos(kx)\int cos(\omega t)dt \end{equation}


\begin{equation} -2E_{0}kcos(kx)\int cos(\omega t)dt=-\frac{2E_{0}k}{\omega}cos(kx)sen(\omega t) \end{equation}

Entonces

\begin{equation} B(x,t)=-\frac{2E_{0}k}{\omega}cos(kx)sen(\omega t) \end{equation}

Pero \begin{equation} \frac{E_{0}k}{\omega}=\frac{E_{0}}{c}=B_{0} \end{equation}

Por lo tanto:

\begin{equation} B(x,t)=-2B_{0}cos(kx)sen(\omega t) \end{equation}

Esquema de la onda estacionaria

Yep.gif

Angel Nahir Molina Guadarrama (discusión) 03:45 28 mar 2014 (UTC)

--Daniela López Martínez (discusión) 21:16 6 jul 2013 (CDT)


3.11/7.11

Considerando el experimento de Wiener (figura 7.11) en la luz monocromática cuya longitud de onda es de $550 nm$, si el plano de la película estuviera inclinado $1°$ con respecto a la superficie de reflexión, determine el número de franjas brillantes por centímetro que aparecerán en el plano.


Los planos antinodales están separados una distancia $\frac{\lambda}{2}$ uno del otro. El seno del ángulo de inclinación de la película se relaciona como sigue con el número de franjas brillantes y la separación entre los planos:

Con un simple despeje podemos obtener el número de franjas que hay por centímetro con la placa fotográfica inclinada $1°$ :

Error al representar (error de sintaxis): \frac{No. franjas}{cm}=\frac{\frac{1}{\lambda/2}}{Sen \theta}=\frac{\frac{1}{5.5 * 10^{-7} cm}}{Sen (1°)}

Por lo tanto, el número de franjas brillantes por centímetro que aparecen en el plano son:

Brenda Pérez Vidal (discusión) 19:04 27 mar 2014 (UTC)


3.12/7.12 Un laser emite unos pulsos de UV que dura cada uno y cuyo haz tiene un diametro de . Suponiendo que la potencia de cada pulso tiene una energia de 6.0J: (a)calcule la extension espacial de cada tren de ondas, y (b)calcule la energia media por unidad de volumen de tal pulso.

R: (a) conociendo la ecuacion sustituimos los datos dados


(b)el volumen de un solo pulso esta dado por la formula




por lo tanto

--Leticia González Zamora (discusión) 16:01 20 jun 2013 (CDT)



3.16/7.16 Imagine que usted esta parado en una trayectoria de una antena que esta radiando ondas planas de frecuencia 100MHz y desnsidad de flujo 19.88x10^-2 W/m^2. Calcula la densidad fe flujo de fotones, es decir, el numero de fotones por unidad de tiempo por unidad de área.¿Cuantos fotones, en promedio, se encontraran en un metro cubico de esta región?


De la formula de la energia y usando la constante de plank




aplicaremos la formula para calcular el numero de fotones por metro cubico



Todos los fotones en el volumen V cruzan la unidad de área en un segundo





--David Alberto Rojas Solis (discusión) 10:23 6 jul 2013 (CDT)


3.25/7.25 Un gas ionizado o un plasma sirve como medio dispersor para ondas electromagneticas. Puesto que la ecuacion de dispersion es:


Donde omega subindice p es la constante del plasma, determine las expresiones tanto de la fase como de las velocidades de grupo y demuestre que


De la relacion precedente.


por la definicion de velocidad de grupo.


Obtenemos la derivada:


Al simplificar.


Entonces la velocidad de grupo.


Por otro lado en general la velocidad está dada por:



entonces podemos demostrar la propiedad de la segunda parte.


Simplificando obtenemos el resultado esperado.

--Daniela López Martínez (discusión) 20:17 6 jul 2013 (CDT)


3.32/7.32 ¿Cuàl es la velocidad de la luz en un diamante si el indice de refracciòn es de 2.42?

"Se denomina índice de refracción al cociente entre la velocidad de la luz en el vacío y la velocidad de la luz en el medio cuyo índice se calcula. Se simboliza con la letra n y se trata de un valor adimensional.

n: es el indice de refracciòn

v: velocidad de la luz en el medio cuyo índice se calcula (agua, vidrio, diamante,etc.).

c: velocidad de la luz en el vacio

De 1 se tiene que la velocidad de luz en el diamante (v) es igual a la velocidad de la luz en el vacío (c), entre el índice de refracción del diamante (2.42); o sea:


3.38/7.38 La luz amarilla de una lámpara de sodio (Lamda =) cruza un depósito de glicerina (con índice de 1,47) de 20 cm de largo, en un tiempo t1. Si la luz tarda t2 en cruzar el mismo depósito cuando está lleno de disulfuro de carbono (índice 1,63), clacule el valor de t2-t1.

Sabemos la relación del índice de refracción con la velocidad:

Tomando a la definición de la velocidad

despejando al tiempo en la última ecuación y sustituyéndola en la primera ecuación

haciendo lo mismo para el disulfuro de carbono

restanto el segundo tiempo al primero

sustituyendo los datos nos queda:

--Ignacio Peralta Martínez (discusión) 02:03 6 jul 2013 (CDT)


--MISS (discusión) 00:10 23 jun 2013 (CDT)