Ondas: conservacion

De luz-wiki
Revisión del 14:48 10 sep 2007 de Mfg (discusión | contribs.)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)

\section{Energy of a wave according to Borowitz} \subsection{Energy and flow of real wave equation in one dimension\footnote{ S. Borowitz, Fundamentals of Quantum Mechanics, W.A. Benjamin, NY (1967), pp.71-74}} \[ \frac{\partial ^2\psi }{\partial z^2}-\frac{1}{v^2}\frac{\partial ^2\psi }{\partial t^2}=0 \] multiply by $\frac{\partial \psi }{\partial t}=\dot {\psi }$, then $\dot {\psi }\left( {\frac{\partial ^2\psi }{\partial z^2}-\frac{1}{v^2}\frac{\partial \dot {\psi }}{\partial t}} \right)=0$. Notice that $\frac{\partial }{\partial t}\left( {\frac{\partial \psi }{\partial z}} \right)^2=2\frac{\partial \psi }{\partial z}\frac{\partial \dot {\psi }}{\partial z}$ and $\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi }{\partial z}} \right)=\dot {\psi }\frac{\partial ^2\psi }{\partial z^2}+\frac{\partial \psi }{\partial z}\frac{\partial \dot {\psi }}{\partial z}$ so that their difference yields $\textstyle{1 \over 2}\frac{\partial }{\partial t}\left( {\frac{\partial \psi }{\partial z}} \right)^2-\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi }{\partial z}} \right)=-\dot {\psi }\frac{\partial ^2\psi }{\partial z^2}$; whereas the second time derivative may be written as $\dot {\psi }\frac{\partial \dot {\psi }}{\partial t}=\textstyle{1 \over 2}\frac{\partial \dot {\psi }^2}{\partial t}$, so that the equation is: \[ \textstyle{1 \over 2}\frac{\partial }{\partial t}\left( {\frac{\partial \psi }{\partial z}} \right)^2-\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi }{\partial z}} \right)+\frac{1}{v^2}\textstyle{1 \over 2}\frac{\partial \dot {\psi }^2}{\partial t}=0 \] grouping temporal and spatial derivatives, we obtain a continuity type equation: \begin{equation} \label{eq1} \frac{\partial }{\partial t}\textstyle{1 \over 2}\left[ {\left( {\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right]-\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi }{\partial z}} \right)=0 \end{equation} and thus a density and flux may be defined as ${e}'=\textstyle{1 \over 2}\left[ {\left( {\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right]$, ${S}'=\dot {\psi }\frac{\partial \psi }{\partial z}$. The dimensionless density or flow (with units of velocity) are translated into energy density and flow multiplying by $\sigma =\rho v^2$, where $\rho $ is the mass per unit length. \begin{equation} \label{eq2} e=\textstyle{1 \over 2}\rho v^2\left[ {\left( {\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right] \end{equation} \begin{equation} \label{eq3} S=\rho v^2\dot {\psi }\frac{\partial \psi }{\partial z} \end{equation} the wave function may be real or complex. If it is complex, the energy and flow are also complex.

\section{Energy of a wave according to Borowitz} \subsection{Energy and flow of real wave equation in one dimension\footnote{ S. Borowitz, Fundamentals of Quantum Mechanics, W.A. Benjamin, NY (1967), pp.71-74}} \[</span> <span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> ^2</span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> }{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> z^2}-</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{1}{v^2}</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> ^2</span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> </span> <span style="color: #00a000;">}{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> t^2}=0</span> <span style="color: #00a000;">\] multiply by $\frac{\partial \psi }{\partial t}=\dot {\psi }$, then $\dot {\psi }\left( {\frac{\partial ^2\psi }{\partial z^2}-\frac{1}{v^2}\frac{\partial \dot {\psi }}{\partial t}} \right)=0$. Notice that $\frac{\partial }{\partial t}\left( {\frac{\partial \psi }{\partial z}} \right)^2=2\frac{\partial \psi }{\partial z}\frac{\partial \dot {\psi }}{\partial z}$ and $\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi }{\partial z}} \right)=\dot {\psi }\frac{\partial ^2\psi }{\partial z^2}+\frac{\partial \psi }{\partial z}\frac{\partial \dot {\psi }}{\partial z}$ so that their difference yields $\textstyle{1 \over 2}\frac{\partial }{\partial t}\left( {\frac{\partial \psi }{\partial z}} \right)^2-\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi }{\partial z}} \right)=-\dot {\psi }\frac{\partial ^2\psi }{\partial z^2}$; whereas the second time derivative may be written as $\dot {\psi }\frac{\partial \dot {\psi }}{\partial t}=\textstyle{1 \over 2}\frac{\partial \dot {\psi }^2}{\partial t}$, so that the equation is: \[</span> <span style="color: #606000;">\textstyle</span><span style="color: #00a000;">{1 </span><span style="color: #606000;">\over</span><span style="color: #00a000;"> 2}</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> }{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> t}</span><span style="color: #606000;">\left</span><span style="color: #00a000;">( {</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> </span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> </span> <span style="color: #00a000;">}{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> z}} </span><span style="color: #606000;">\right</span><span style="color: #00a000;">)^2-</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> }{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> z}</span><span style="color: #606000;">\left</span><span style="color: #00a000;">( {</span><span style="color: #606000;">\dot</span><span style="color: #00a000;"> {</span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> </span> <span style="color: #00a000;">}</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> </span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> }{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> z}} </span><span style="color: #606000;">\right</span><span style="color: #00a000;">)+</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{1}{v^2}</span><span style="color: #606000;">\textstyle</span><span style="color: #00a000;">{1 </span><span style="color: #606000;">\over</span><span style="color: #00a000;"> </span> <span style="color: #00a000;">2}</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> </span><span style="color: #606000;">\dot</span><span style="color: #00a000;"> {</span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> }^2}{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> t}=0</span> <span style="color: #00a000;">\] grouping temporal and spatial derivatives, we obtain a continuity type equation: \begin{equation} \label{eq1} \frac{\partial }{\partial t}\textstyle{1 \over 2}\left[ {\left( {\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right]-\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi }{\partial z}} \right)=0 \end{equation} and thus a density and flux may be defined as ${e}'=\textstyle{1 \over 2}\left[ {\left( {\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right]$, ${S}'=\dot {\psi }\frac{\partial \psi }{\partial z}$. The dimensionless density or flow (with units of velocity) are translated into energy density and flow multiplying by $\sigma =\rho v^2$, where $\rho $ is the mass per unit length. \begin{equation} \label{eq2} e=\textstyle{1 \over 2}\rho v^2\left[ {\left( {\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right] \end{equation} \begin{equation} \label{eq3} S=\rho v^2\dot {\psi }\frac{\partial \psi }{\partial z} \end{equation} the wave function may be real or complex. If it is complex, the energy and flow are also complex.

categoría:ondas