Diferencia entre revisiones de «Lagrange identity»

De luz-wiki
Sin resumen de edición
Sin resumen de edición
Línea 1: Línea 1:
 
== Lagrange's identity obtained from product identity ==
Lagrange's identity obtained from product identity


We present an identity of products that reduces to Lagrange's identity
We present an identity of products that reduces to Lagrange's identity
Línea 32: Línea 31:
derivation has induced us to present it for complex numbers.  
derivation has induced us to present it for complex numbers.  


 
== Lagrange's identity for complex numbers ==
Lagrange's identity for complex numbers


Let <math>a_{i},b_{i}\in\mathbb{C}</math> be complex numbers and the overbar
Let <math>a_{i},b_{i}\in\mathbb{C}</math> be complex numbers and the overbar
Línea 43: Línea 41:


Expand the product on the LHS of the product identity in terms of
Expand the product on the LHS of the product identity in terms of
series%
series up to fourth order
\footnote{Recall that products of the form <math>\left(1+x_{i}\right)</math> can be expanded
 
Recall that products of the form <math>\left(1+x_{i}\right)</math> can be expanded
in terms of sums as
in terms of sums as
<math>
<math>
Línea 51: Línea 50:
where <math>\mathcal{O}^{3+}(x)</math> means terms with order three or higher
where <math>\mathcal{O}^{3+}(x)</math> means terms with order three or higher
in <math>x</math>.
in <math>x</math>.
} up to fourth order
 
<math>
<math>
\prod_{i=1}^{n}\left(1-a_{i}\bar{a}_{i}-b_{i}\bar{b}_{i}+a_{i}\bar{a}_{i}b_{i}\bar{b}_{i}\right)=1-\sum_{i=1}^{n}\left(a_{i}\bar{a}_{i}+b_{i}\bar{b}_{i}\right)+\sum_{i=1}^{n}a_{i}\bar{a}_{i}b_{i}\bar{b}_{i}
\prod_{i=1}^{n}\left(1-a_{i}\bar{a}_{i}-b_{i}\bar{b}_{i}+a_{i}\bar{a}_{i}b_{i}\bar{b}_{i}\right)=1-\sum_{i=1}^{n}\left(a_{i}\bar{a}_{i}+b_{i}\bar{b}_{i}\right)+\sum_{i=1}^{n}a_{i}\bar{a}_{i}b_{i}\bar{b}_{i}
+\sum_{i<j}^{n}\left(a_{i}\bar{a}_{i}a_{j}\bar{a}_{j}+b_{i}\bar{b}_{i}b_{j}\bar{b}_{j}\right)+\sum_{i<j}^{n}\left(a_{i}\bar{a}_{i}b_{j}\bar{b}_{j}+a_{j}\bar{a}_{j}b_{i}\bar{b}_{i}\right)+\mathcal{O}^{5+}.\label{eq:series LHS complex O5}
+\sum_{i<j}^{n}\left(a_{i}\bar{a}_{i}a_{j}\bar{a}_{j}+b_{i}\bar{b}_{i}b_{j}\bar{b}_{j}\right)+\sum_{i<j}^{n}\left(a_{i}\bar{a}_{i}b_{j}\bar{b}_{j}+a_{j}\bar{a}_{j}b_{i}\bar{b}_{i}\right)+\mathcal{O}^{5+}.
</math>
</math>
The two factors on the RHS are also written in terms of series
The two factors on the RHS are also written in terms of series
<math>
<math>
Línea 64: Línea 64:
<math>
<math>
\prod_{i=1}^{n}\left(1-a_{i}\bar{a}_{i}\right)\prod_{i=1}^{n}\left(1-b_{i}\bar{b}_{i}\right)=1-\sum_{i=1}^{n}\left(a_{i}\bar{a}_{i}+b_{i}\bar{b}_{i}\right)
\prod_{i=1}^{n}\left(1-a_{i}\bar{a}_{i}\right)\prod_{i=1}^{n}\left(1-b_{i}\bar{b}_{i}\right)=1-\sum_{i=1}^{n}\left(a_{i}\bar{a}_{i}+b_{i}\bar{b}_{i}\right)
+\left(\sum_{i=1}^{n}a_{i}\bar{a}_{i}\right)\left(\sum_{i=1}^{n}b_{i}\bar{b}_{i}\right)+\sum_{i<j}^{n}\left(a_{i}\bar{a}_{i}a_{j}\bar{a}_{j}+b_{i}\bar{b}_{i}b_{j}\bar{b}_{j}\right)+\mathcal{O}^{5+}.\label{eq:series RHS complex O5}
+\left(\sum_{i=1}^{n}a_{i}\bar{a}_{i}\right)\left(\sum_{i=1}^{n}b_{i}\bar{b}_{i}\right)+\sum_{i<j}^{n}\left(a_{i}\bar{a}_{i}a_{j}\bar{a}_{j}+b_{i}\bar{b}_{i}b_{j}\bar{b}_{j}\right)+\mathcal{O}^{5+}.
</math>
</math>
Substitution of \eqref{eq:series LHS complex O5} and \eqref{eq:series RHS complex O5}
Substitution of these two results in the product identity give  
in the product identity give  
<math>
<math>
\sum_{i=1}^{n}a_{i}\bar{a}_{i}b_{i}\bar{b}_{i}+\sum_{i<j}^{n}\left(a_{i}\bar{a}_{i}b_{j}\bar{b}_{j}+a_{j}\bar{a}_{j}b_{i}\bar{b}_{i}\right)=\left(\sum_{i=1}^{n}a_{i}\bar{a}_{i}\right)\left(\sum_{i=1}^{n}b_{i}\bar{b}_{i}\right).
\sum_{i=1}^{n}a_{i}\bar{a}_{i}b_{i}\bar{b}_{i}+\sum_{i<j}^{n}\left(a_{i}\bar{a}_{i}b_{j}\bar{b}_{j}+a_{j}\bar{a}_{j}b_{i}\bar{b}_{i}\right)=\left(\sum_{i=1}^{n}a_{i}\bar{a}_{i}\right)\left(\sum_{i=1}^{n}b_{i}\bar{b}_{i}\right).
</math>
</math>
The product of two conjugates series can be expressed as series involving
The product of two conjugates series can be expressed as series involving
the product of conjugate terms%
the product of conjugate terms
\footnote{The conjugate series product is <math>\left(\sum_{i=1}^{n}x_{i}\right)\left(\sum_{i=1}^{n}\bar{x}_{i}\right)=\sum_{i=1}^{n}x_{i}\bar{x}_{i}+\sum_{i<j}^{n}\left(x_{i}\bar{x}_{j}+\bar{x}_{i}x_{j}\right)</math>.%
 
The conjugate series product is <math>\left(\sum_{i=1}^{n}x_{i}\right)\left(\sum_{i=1}^{n}\bar{x}_{i}\right)=\sum_{i=1}^{n}x_{i}\bar{x}_{i}+\sum_{i<j}^{n}\left(x_{i}\bar{x}_{j}+\bar{x}_{i}x_{j}\right)</math>.%
}, thus
}, thus
<math>
<math>
Línea 79: Línea 79:
=\left(\sum_{i=1}^{n}a_{i}\bar{a}_{i}\right)\left(\sum_{i=1}^{n}b_{i}\bar{b}_{i}\right).
=\left(\sum_{i=1}^{n}a_{i}\bar{a}_{i}\right)\left(\sum_{i=1}^{n}b_{i}\bar{b}_{i}\right).
</math>
</math>
The terms of the last two series on the LHS are grouped as  
The terms of the last two series on the LHS are grouped as  
<math>
<math>
a_{i}\bar{a}_{i}b_{j}\bar{b}_{j}+a_{j}\bar{a}_{j}b_{i}\bar{b}_{i}-a_{i}b_{i}\bar{a}_{j}\bar{b}_{j}-\bar{a}_{i}\bar{b}_{i}a_{j}b_{j}=\left(a_{i}\bar{b}_{j}-a_{j}\bar{b}_{i}\right)\left(\bar{a}_{i}b_{j}-\bar{a}_{j}b_{i}\right),
a_{i}\bar{a}_{i}b_{j}\bar{b}_{j}+a_{j}\bar{a}_{j}b_{i}\bar{b}_{i}-a_{i}b_{i}\bar{a}_{j}\bar{b}_{j}-\bar{a}_{i}\bar{b}_{i}a_{j}b_{j}=\left(a_{i}\bar{b}_{j}-a_{j}\bar{b}_{i}\right)\left(\bar{a}_{i}b_{j}-\bar{a}_{j}b_{i}\right),
</math>
</math>
in order to obtain the complex Lagrange's identity
in order to obtain the complex Lagrange's identity
<math>
<math>
\left(\sum_{i=1}^{n}a_{i}b_{i}\right)\left(\sum_{i=1}^{n}\overline{a_{i}b_{i}}\right)+\sum_{i<j}^{n}\left(a_{i}\bar{b}_{j}-a_{j}\bar{b}_{i}\right)\left(\overline{a_{i}\bar{b}_{j}-a_{j}\bar{b}_{i}}\right)=\left(\sum_{i=1}^{n}a_{i}\bar{a}_{i}\right)\left(\sum_{i=1}^{n}b_{i}\bar{b}_{i}\right).
\left(\sum_{i=1}^{n}a_{i}b_{i}\right)\left(\sum_{i=1}^{n}\overline{a_{i}b_{i}}\right)+\sum_{i<j}^{n}\left(a_{i}\bar{b}_{j}-a_{j}\bar{b}_{i}\right)\left(\overline{a_{i}\bar{b}_{j}-a_{j}\bar{b}_{i}}\right)=\left(\sum_{i=1}^{n}a_{i}\bar{a}_{i}\right)\left(\sum_{i=1}^{n}b_{i}\bar{b}_{i}\right).
</math>
</math>
In terms of the modulii,
In terms of the modulii,
<math>
<math>
Línea 92: Línea 95:
</math>
</math>


 
== other identities ==
 
other identities


The non trivial identities for real numbers obtained to sixth order
The non trivial identities for real numbers obtained to sixth order
series expansion of the product identity <math>\prod_{i=1}^{n}\left(1-a_{i}^{2}-b_{i}^{2}+a_{i}^{2}b_{i}^{2}\right)=\prod_{i=1}^{n}\left(1-a_{i}^{2}\right)\prod_{i=1}^{n}\left(1-b_{i}^{2}\right)</math>
series expansion of the product identity <math>\prod_{i=1}^{n}\left(1-a_{i}^{2}-b_{i}^{2}+a_{i}^{2}b_{i}^{2}\right)=\prod_{i=1}^{n}\left(1-a_{i}^{2}\right)\prod_{i=1}^{n}\left(1-b_{i}^{2}\right)</math>
are
are
<math>
<math>
\sum_{i<j}^{n}\left[a_{i}^{2}a_{j}^{2}\left(b_{i}^{2}+b_{j}^{2}\right)\right]+\sum_{i<j<k}^{n}\left[a_{i}^{2}a_{j}^{2}b_{k}^{2}+a_{i}^{2}b_{j}^{2}a_{k}^{2}+b_{i}^{2}a_{j}^{2}a_{k}^{2}\right]=\left(\sum_{i=1}^{n}b_{i}^{2}\right)\left(\sum_{i<j}^{n}a_{i}^{2}a_{j}^{2}\right)
\sum_{i<j}^{n}\left[a_{i}^{2}a_{j}^{2}\left(b_{i}^{2}+b_{j}^{2}\right)\right]+\sum_{i<j<k}^{n}\left[a_{i}^{2}a_{j}^{2}b_{k}^{2}+a_{i}^{2}b_{j}^{2}a_{k}^{2}+b_{i}^{2}a_{j}^{2}a_{k}^{2}\right]=\left(\sum_{i=1}^{n}b_{i}^{2}\right)\left(\sum_{i<j}^{n}a_{i}^{2}a_{j}^{2}\right)
</math>
</math>
and its counterpart, obtained by interchanging the\emph{ }variables\emph{
 
}<math>a</math> and <math>b</math> .\emph{}
and its counterpart, obtained by interchanging the variables <math>a</math> and <math>b</math>.


Expand the product identity in series up to sixth order. The LHS is
Expand the product identity in series up to sixth order. The LHS is
Línea 131: Línea 133:
involving <math>a^{4}b^{2}</math> and <math>a^{2}b^{4}</math> give the non trivial sixth
involving <math>a^{4}b^{2}</math> and <math>a^{2}b^{4}</math> give the non trivial sixth
order identities
order identities
<math>
<math>
\sum_{i<j}^{n}a_{i}^{2}a_{j}^{2}\left(b_{i}^{2}+b_{j}^{2}\right)+ & \sum_{i<j<k}^{n}\left(a_{i}^{2}a_{j}^{2}b_{k}^{2}+a_{i}^{2}b_{j}^{2}a_{k}^{2}+b_{i}^{2}a_{j}^{2}a_{k}^{2}\right)= & \left(\sum_{i=1}^{n}b_{i}^{2}\right)\left(\sum_{i<j}^{n}a_{i}^{2}a_{j}^{2}\right)
\sum_{i<j}^{n}a_{i}^{2}a_{j}^{2}\left(b_{i}^{2}+b_{j}^{2}\right)+ \sum_{i<j<k}^{n}\left(a_{i}^{2}a_{j}^{2}b_{k}^{2}+a_{i}^{2}b_{j}^{2}a_{k}^{2}+b_{i}^{2}a_{j}^{2}a_{k}^{2}\right)= & \left(\sum_{i=1}^{n}b_{i}^{2}\right)\left(\sum_{i<j}^{n}a_{i}^{2}a_{j}^{2}\right)
\sum_{i<j}^{n}b_{i}^{2}b_{j}^{2}\left(a_{i}^{2}+a_{j}^{2}\right)+ & \sum_{i<j<k}^{n}\left(a_{i}^{2}b_{j}^{2}b_{k}^{2}+b_{i}^{2}a_{j}^{2}b_{k}^{2}+b_{i}^{2}b_{j}^{2}a_{k}^{2}\right)= & \left(\sum_{i=1}^{n}a_{i}^{2}\right)\left(\sum_{i<j}^{n}b_{i}^{2}b_{j}^{2}\right).
</math>
 
<math>
\sum_{i<j}^{n}b_{i}^{2}b_{j}^{2}\left(a_{i}^{2}+a_{j}^{2}\right)+ \sum_{i<j<k}^{n}\left(a_{i}^{2}b_{j}^{2}b_{k}^{2}+b_{i}^{2}a_{j}^{2}b_{k}^{2}+b_{i}^{2}b_{j}^{2}a_{k}^{2}\right)= & \left(\sum_{i=1}^{n}a_{i}^{2}\right)\left(\sum_{i<j}^{n}b_{i}^{2}b_{j}^{2}\right).
</math>
</math>




=== conclusions ===


conclusions


Lagrange's identity for complex numbers has been obtained from a straight-forward
Lagrange's identity for complex numbers has been obtained from a straight-forward
Línea 149: Línea 155:
proof is yet another way to obtain the CS inequality.  
proof is yet another way to obtain the CS inequality.  


<references/>


 
<ref> P.~Fjelstad and S.~G. Gal., ''n-dimensional hyperbolic complex numbers'', Adv. Appl. Clifford Alg., 1998 [8(1), pag.47–68] </ref>
 
P.~Fjelstad and S.~G. Gal.
P.~Fjelstad and S.~G. Gal.
\newblock {n-dimensional hyperbolic complex numbers}.
\newblock {n-dimensional hyperbolic complex numbers}.

Revisión del 12:16 19 ago 2012

Lagrange's identity obtained from product identity

We present an identity of products that reduces to Lagrange's identity when a series expansion to fourth order terms are considered. Sixth and higher order terms produce other series identities.

Normed division algebras require that the norm of the product is equal to the product of the norms. Lagrange's identity exhibits this equality. Due to Hurwitz theorem, it admits this interpretation only for algebras isomorphic to the real numbers, complex numbers, quaternions and octonions . If divisors of zero are allowed, many other algebraic structures in are possible. Two such possibilities for hyperbolic numbers has been introduced by Fjelstad and Gal \cite{fjelstad+gal1998} and more recently by Catoni et al. \cite{catoni2005}. Another approach has been presented in the context of a deformed Lorentz metric. This latter proposal is based on a transformation stemming from the product operation and magnitude definition in hyperbolic scator algebra \cite{fernandez-guasti2011_2}. The product identity used as a starting point here, is a consequence of the equality for scator algebras.

Lagrange's identity can be proved in a variety of ways \cite{Steele2004}. Most derivations use the identity as a starting point and prove in one way or another that the equality is true. In the present approach, Lagrange's identity is actually derived without assuming it \emph{a priori}. The pseudo-norm of the product identity used in the derivation has the strength to imply an infinite number of identities. An example when sixth order terms are retained is shown here. The ease of the derivation has induced us to present it for complex numbers.

Lagrange's identity for complex numbers

Let be complex numbers and the overbar represents complex conjugate.

The product identity reduces to the complex Lagrange's identity when fourth order terms, in a series expansion, are considered.

Expand the product on the LHS of the product identity in terms of series up to fourth order

Recall that products of the form can be expanded in terms of sums as where means terms with order three or higher in .

The two factors on the RHS are also written in terms of series The product of this expression up to fourth order is Substitution of these two results in the product identity give The product of two conjugates series can be expressed as series involving the product of conjugate terms

The conjugate series product is .% }, thus

The terms of the last two series on the LHS are grouped as

in order to obtain the complex Lagrange's identity

In terms of the modulii,

other identities

The non trivial identities for real numbers obtained to sixth order series expansion of the product identity are

and its counterpart, obtained by interchanging the variables and .

Expand the product identity in series up to sixth order. The LHS is Consider only the sixth order terms The RHS of the product identity is similarly expanded in series up to sixth order

and only sixth order terms retained These two results are equated for equal powers of . The terms and give trivial identities whereas the terms involving and give the non trivial sixth order identities

Error al representar (error de sintaxis): {\displaystyle \sum_{i<j}^{n}a_{i}^{2}a_{j}^{2}\left(b_{i}^{2}+b_{j}^{2}\right)+ \sum_{i<j<k}^{n}\left(a_{i}^{2}a_{j}^{2}b_{k}^{2}+a_{i}^{2}b_{j}^{2}a_{k}^{2}+b_{i}^{2}a_{j}^{2}a_{k}^{2}\right)= & \left(\sum_{i=1}^{n}b_{i}^{2}\right)\left(\sum_{i<j}^{n}a_{i}^{2}a_{j}^{2}\right) }

Error al representar (error de sintaxis): {\displaystyle \sum_{i<j}^{n}b_{i}^{2}b_{j}^{2}\left(a_{i}^{2}+a_{j}^{2}\right)+ \sum_{i<j<k}^{n}\left(a_{i}^{2}b_{j}^{2}b_{k}^{2}+b_{i}^{2}a_{j}^{2}b_{k}^{2}+b_{i}^{2}b_{j}^{2}a_{k}^{2}\right)= & \left(\sum_{i=1}^{n}a_{i}^{2}\right)\left(\sum_{i<j}^{n}b_{i}^{2}b_{j}^{2}\right). }


conclusions

Lagrange's identity for complex numbers has been obtained from a straight-forward product identity. The procedure is elementary and very economical. A derivation for the reals is obviously even more succinct. In a wider context, this product identity can be seen as a consequence of the relationship for scator algebras. Since the Cauchy–Schwarz inequality is a particular case of Lagrange's identity \cite{Steele2004}, this proof is yet another way to obtain the CS inequality.


[1] P.~Fjelstad and S.~G. Gal. \newblock {n-dimensional hyperbolic complex numbers}. \newblock {\em Adv. Appl. Clifford Alg.}, 8(1):47–68, 1998.


F.~Catoni, R.~Cannata, E.~Nichelatti, and P.~Zampetti. \newblock {Commmutative hypercomplex numbers and functions of hypercomplex

 variable: a matrix study}.

\newblock {\em Advances in Applied Clifford Algebras}, 15(2):183–212, 2005.


M.~Fernández-Guasti. \newblock {Alternative realization for the composition of relativistic

 velocities}.

\newblock In {\em {Optics and Photonics 2011}}, volume 8121 of {\em {The nature

 of light: What are photons? IV}}, page 812108–1–11. SPIE, 2011.


J.~Michael Steele. \newblock {\em {Cauchy-Schwarz master class: an introduction to the art of

 mathematical inequalities}}.

\newblock CUP, 2004.

  1. P.~Fjelstad and S.~G. Gal., n-dimensional hyperbolic complex numbers, Adv. Appl. Clifford Alg., 1998 [8(1), pag.47–68]