Compleja:z-ej-cap2.3

De luz-wiki

La función exponencial y el logaritmo complejo

2.27 Demuestre que los ceros de las funciones seno y coseno complejas son los mismos que los de las funciones reales correspondientes.

Demostración:

Para la función seno tenemos

Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \sin sen(z)=\frac{1}{2i}(e^{iz}-e^{-iz})=0 , entonces Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): e^{iz}=e^{-iz} , como , asi

Al separar las partes reales e imaginarias, se obtiene el siguiente sistema de ecuaciones

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): e^{-b}sen(a)=-e^bsen(a)\Longrightarrow (e^{-b}+e^b)sen(a)=0\cdots\cdots\cdots\cdots (1)

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): e^{-b}\cos(a)=e^bcos(a)\Longrightarrow(e^{-b}-e^b)cos(a)=0\cdots\cdots\cdots\cdots (2)

De (1) se observa que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): e^{-b}+e^b\not=0 , por lo que necesariamente Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): sen(a)=0\Longrightarrow a=0 , sustituyendo en (2) se tiene que


Para la función coseno tenemos

Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): cos(z)=\frac{1}{2}(e^{iz}+e^{-iz})=0 , entonces Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): e^{iz}=-e^{-iz} , luego

Al separar las partes reales e imaginarias, se obtiene el siguiente sistema de ecuaciones

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): e^{-b}sen(a)=e^bsen(a)\Longrightarrow (e^{-b}-e^b)sen(a)=0\cdots\cdots\cdots\cdots (3)

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): e^{-b}cos(a)=-e^bcos(a)\Longrightarrow(e^{-b}+e^b)cos(a)=0\cdots\cdots\cdots\cdots (4)

De (4) se observa que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): e^{-b}+e^b\not=0 , por lo que necesariamente , sustituyendo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): a en (3) se tiene que

Por lo tanto, el cero de las fuciones seno y coseno complejas son las mismas que el de las funciónes reales correspondientes.

--Pérez Córdoba Sabino (discusión) 15:47 28 nov 2012 (CST)


2.28 Concluya del ejercicio anterior que las funciones complejas Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): sen(z) y , son periódicas con periodos reales de la forma Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \tau=2k\pi con Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): k\in\mathbb{Z} . Es decir,sus dominios de periocidad son banda verticales de ancho Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): 2\pi .

Del ejercicio anterior, se concluyó, para la función seno, que si , con , entonces & , de donde Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): a=arcsen(0)=2k\pi,k\in\mathbb{Z} , es decir,

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z es puramente real, de la forma Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z=2k\pi , cuyo ancho de banda es Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): 2\pi .

Para el caso del coseno, se concluyó que si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): cos(a)=0 , entonces Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): a=arccos(0)=\frac{\pi}{2}+2k\pi & Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): b=0 , nuevamente Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z es puramente real, de la forma . cuyo ancho de banda es

--Pérez Córdoba Sabino (discusión) 16:06 28 nov 2012 (CST)


2.31. Las funciones trigonométricas hiperbólicas se definen como sigue Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): senhz =\frac{1}{2}(e^z-e^{-z}) : Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): coshz = \frac{1}{2}(e^z+e^{-z}) : Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): tanhz= \frac{senhz}{coshz} : : Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): sechz=\frac{1}{coshz} : Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): cschz=\frac{1}{senhz}. :

1. Observe que senhz y coshz son holomorfas en todo C. Encuentre los mayores dominios donde las otras funciones hiperbólicas anteriores son holomorfas

2. Obtenga expresiones para las derivadas de las funciones hiperbólicas.

3. Demuestre las identidades siguientes: Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): Cosh^2z-senh^2z = 1 cosz = coshiz i sen z = senhiz :

4. Demuestre las identidades siguientes:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): cosh(a+b) = coshacoshb+senhasenhb

donde

2.-


Usando la definición de tenemos:

Error al representar (error de sintaxis): (Senhz)´= (\frac{1}{2}(e^z-e^{-z}))´ = \frac{1}{2}\frac{ d(e^z-e^{-z})}{dz} = \frac{1}{2}[e^z+e^{-z}] y por

recordando que

entonces se tiene que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): (Senhz)´= coshz


Procedemos de manera similar, derivando la definición de .

Error al representar (error de sintaxis): (Coshz)´= (\frac{1}{2}(e^z+e^{-z}))´ = \frac{1}{2}\frac{ d(e^z+e^{-z})}{dz} = \frac{1}{2}[e^z-e^{-z}] y por

recordando que

entonces se tiene que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): (Coshz)´= senhz

Para la tangente hiperbólica se tiene,

Por definición del senhz y coshz podemos obtener:

=

Derivando,

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): (tanhz)´

Desarrollando y eliminando términos;

Usando el hecho de que y sustituyendo; se obtiene.


Demostracion:

Usando la definición de senhz y coshz se tiene

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): (cothz)´= \frac{(e^z-e^{-z})(e^z-e^{-z})-(e^z+e^{-z})(e^z+e^{-z})}{(e^z+e^{-z})^2}

Desarrollando y eliminando términos, obtenemos.

El último termino se obtuvo utilizando la identidad de senhz.



Derivando la última expresión tenemos.

Usando el hecho de que 2coshz= e^z+e^{-z} y sustituyendo dentro de la ecuación anterior.


Derivando el cschz se tiene que,

Error al representar (error de sintaxis): (cschz)´= \frac{-2(e^z+e^{-z}}{(e^z-e^{-z})^2} =

Usando las identidades de senhz y coshz se tiene:

4.- Identidades

Demostrar

Por definición tenemos que: y

Se eliminan algunos términos y obtenemos,


Demostrar

Usando las definiciones, vemos que:

Se eliminan algunos términos y obtenemos,

Sea

Y por definición del y se tiene:

Por demostrar.

Sea

Y por definición del y se tiene:

--Jean Carlo Cruz Venegas (discusión) 07:10 29 nov 2012 (CST)


2.35. Muestre que la función del ejemplo 2.9 no tiene una conjugada armónica.

El ejemplo al cuál se hace referencia es

--Jean Carlo Cruz Venegas (discusión) 12:53 29 nov 2012 (CST)


2.37 Demuestre que las ecucaciones de Laplace tienen la forma en coordenadas polares:

entonces:

y:

como entonces:


de la misma forma:

como entonces:

--Cesar (discusión) 10:34 29 nov 2012 (CST)




--mfg-wiki (discusión) 17:32 15 nov 2012 (UTC)

Compleja:z-ej-cap1.0

Compleja:z-ej-cap1.1

Compleja:z-ej-cap1.2

Compleja:z-ej-cap1.3

Compleja:z-ej-cap1.4

Compleja:z-ej-cap2.1

Compleja:z-ej-cap2.2