Compleja:z-ej-cap2.2
Las ecuaciones de Cauchy-Riemann
2.9 Si es una región, defina . Si es holomorfa, defina mediante . Demuestre que es holomorfa.
- Demostración:
Sea , entonces , tomando Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \bar w=z=a+bi . Definimos Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): A(a,b),B(a,b):\mathbb{R}^2\longrightarrow\mathbb{R} funciones diferenciables tales que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f(z)=A(a,b)+B(a,b)i , con lo cual Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f es holomorfa, entonces
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f^*(w)=\overline{f(\bar w)}=\overline{f(z)}=\overline{A(a,b)+B(a,b)i}=A(a,b)+\big(-B(a,b)\big)i Como Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): B(a,b) es diferenciable, entonces Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): -B(a,b) tambien lo es, luego Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f^* es diferenciable.
Por lo tanto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f^* es holomorfa.
--Pérez Córdoba Sabino (discusión) 00:29 28 nov 2012 (CST)
2.10 Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \Omega=\Omega^* observe que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \Omega es simétrica con respecto al eje real por el ejercicio anterior se sigue que la función Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): g:\Omega\longrightarrow\mathbb{C} dada por Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): g(z):=f(z)-f^*(z) es holomorfa.
- Demostración
Del ejercicio anterior se tiene que si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f(z) es holomorfa, entonces Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f^*(z) es holomorma y en consecuencia diferenciables, de la proposición 2.1 la suma de dos funciones diferenciables es diferenciable, luego Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): g(z) es diferenciable, por lo tanto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): g(z) es holomorfa.
--Pérez Córdoba Sabino (discusión) 01:01 28 nov 2012 (CST)
2.14) Encuentre todas las funciones holomorfas Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f=u+iv \textrm{ con } u(x,y)=x^2-y^2
- Solucion:
- Sea Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f(z)=z^92 \Rightarrow {(u+iv)^2}=u^2+2iuv-v^2 donde:
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): u(x,y)=x^2-y^2 \land v(x,y)=2xy
- Derivando parcialmente:
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): u_{x}(x,y)=2x \land u_{y}(x,y)=-2y : Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): v_{x}(x,y)=2y \land v_{y}(x,y)=2x
- Ambas satisfacen las ecuaciones de Riemann
2.15) Demuestre que no hay funciones holomorfas Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f=u+iv \textrm{ con } u(x,y)=x^2+y^2 Solucion: Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f(z)= |z|^2 = x^2+y^2 \textrm{ i.e. } f(x+iy)=x^2+y^2 Entonces:
- Si z=0
- Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f'(0)= \lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{|h|^2}{h}= \lim_{h\to 0} \frac{h\overline{h}}{h} = \lim_{h\to 0} \overline{h} = 0
- Si z \ne 0
- Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f' (z)= \lim_{h\to 0} \ frac{f(z+h)-f(z)}{h} = \lim_{h\to 0} \frac{|z+h|^2-|z|^2}{h} = \lim_{h\to 0} \frac{(z+h)\overline{(z+h)}-z\overline{z}}{h} = \lim_{h\to 0} \frac{z\overline{h}+h\overline{z}+h\overline{h}}{h} = \lim_{h\to 0} \frac{z\overline{h}}{h} + \overline{z} + \overline{h}
- Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): h\in \mathbb{R}
tenemos:
- Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \lim_{h\to 0} \ frac{f(z+h)-f(z)}{h} = \overline{z} + z
- Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): h=ir \textrm{ con } r>0
entonces:
- Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \lim_{h\to 0} \ frac{f(z+h)-f(z)}{h} = \overline{z} - z
- Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): h\in \mathbb{R}
tenemos:
- como Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z\ne 0 \Rightarrow \overline{z} + z \ne \overline{z} - z
- Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \therefore f(z) \textrm{ no es diferenciable en } z\ne 0
--Cesar (discusión) 21:01 27 nov 2012 (CST)
2.17. Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f:\Omega \to \mathbb{C}
es holomorfa, Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \Omega
una región y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): u
es constante, desmuestre que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f
es constante. Similarmente, si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): v
es constante, entonces Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f
es constante.
Sea Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f=u+iv
a) Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): u(x,y)=Re f(z) = \mbox{ constante },
por lo tanto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0
.
Y por las condiciones de Cauchy-Riemann (C-R) Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0
.
Lo que implica que
b) por lo tanto .
Y por las condiciones C-R .
Por tanto
--Belen (discusión) 23:24 22 nov 2012 (CST)
2.18. Si es holomorfa, una región y es constante, desmuestre que es constante.
Si y, por tanto,
.
Como el lado derecho es una función holomorfa, es holomorfa.
Ahora, como las condiciones de C-R se traducen en:
,
y las mismas condiciones sobre implican
.
Así que tenemos que
y, por lo tanto, .
Análogamente, y .
Entonces y son constantes y por tanto .
--Belen (discusión) 23:38 22 nov 2012 (CST)