Diferencia entre revisiones de «Compleja:z-ej-cap2.1»
Sin resumen de edición |
|||
Línea 1: | Línea 1: | ||
==Derivadas== | ==Derivadas== | ||
'''2.4) (Teorema de Rolle) Si <math>a,b \in\mathbb{R}</math> con a<b y <math> f:[a,b]\to\mathbb{R}</math> es continua, y además es derivable en (a,b), demuestre que si <math>f(a)=f(b)</math>, existe un <math>\xi\in(a,b)</math> donde <math>f</math> alcanza su máximo o mínimo.''' | |||
:Demostración: | |||
:Como f es continua en [a,b], entonces: | |||
:<math> \exists x_{1},x_{2}\in[a,b] \textrm{ tal que } \forall x\in[a,b]\Rightarrow f(x_{1})\le f(x) \le f(x_{2}) </math> | |||
:Si <math>f(x_{1})=f(x)</math> entonces <math>f</math> es constante y en este caso cualquier <math>x_{0}\in(a,b)</math> satisface <math> f´(x_{0})=0 </math> | |||
:Si <math>x_{1}\in \{a,b\} \Rightarrow f(x_{1})=f(a)=f(b)</math> | |||
::pero si: <math>f(x_{1}) \ne f(x_{2}) \Rightarrow f(x_{2})\ne f(a) \land f(x_{2})\ne f(b) \Rightarrow x_{2}\notin \{a,b\} \Rightarrow x_{2}\in (a,b) \textrm{ y } f´(x_{2})=0</math> | |||
:Si <math>x_{2}\in \{a,b\} \Rightarrow x_{1}\notin \{a,b\} x_{1}\in (a,b) \textrm{ y } f´(x_{1})=0</math> | |||
--[[Usuario:Cecilia Carrizosa Muñoz|cecy]] ([[Usuario discusión:Cecilia Carrizosa Muñoz|discusión]]) 21:15 27 nov 2012 (CST) | |||
---- | |||
'''2.7. (Derivada de la función inversa para funciones reales). Usando la formulación de Carathéodory, demuestre que si <math>f:(a,b)\to \mathbb{R} </math> es continua e inyectiva y para <math>\xi ∈ (a,b), \mbox{ } f'(\xi)</math> existe y no es nula, para la inversa <math>g</math> de <math>f</math> se tiene que <math>g'(f(\xi))=\frac{1}{f'(\xi)}</math>.''' | '''2.7. (Derivada de la función inversa para funciones reales). Usando la formulación de Carathéodory, demuestre que si <math>f:(a,b)\to \mathbb{R} </math> es continua e inyectiva y para <math>\xi ∈ (a,b), \mbox{ } f'(\xi)</math> existe y no es nula, para la inversa <math>g</math> de <math>f</math> se tiene que <math>g'(f(\xi))=\frac{1}{f'(\xi)}</math>.''' |
Revisión del 22:15 27 nov 2012
Derivadas
2.4) (Teorema de Rolle) Si con a<b y es continua, y además es derivable en (a,b), demuestre que si , existe un donde alcanza su máximo o mínimo.
- Demostración:
- Como f es continua en [a,b], entonces:
- Si entonces es constante y en este caso cualquier satisface Error al representar (error de sintaxis): f´(x_{0})=0
- Si
- pero si: Error al representar (error de sintaxis): f(x_{1}) \ne f(x_{2}) \Rightarrow f(x_{2})\ne f(a) \land f(x_{2})\ne f(b) \Rightarrow x_{2}\notin \{a,b\} \Rightarrow x_{2}\in (a,b) \textrm{ y } f´(x_{2})=0
- Si Error al representar (error de sintaxis): x_{2}\in \{a,b\} \Rightarrow x_{1}\notin \{a,b\} x_{1}\in (a,b) \textrm{ y } f´(x_{1})=0
--cecy (discusión) 21:15 27 nov 2012 (CST)
2.7. (Derivada de la función inversa para funciones reales). Usando la formulación de Carathéodory, demuestre que si es continua e inyectiva y para Error al representar (error de sintaxis): \xi ∈ (a,b), \mbox{ } f'(\xi)
existe y no es nula, para la inversa de se tiene que .
Demostración.
Sea .
Como es derivable en , tenemos que Error al representar (error de sintaxis): f(x)-f(\xi)=\varphi(x)(x-\xi) \mbox{ } \forall \mbox{ } x∈(a,b),
donde es continnua en .
Consideremos que es un intervalo abierto contenido en el dominio de , entonces
Error al representar (error de sintaxis): y-w=f(f^{-1}(y))-f(f^{-1}(w))=\varphi(f^{-1}(y))(f^{-1}(y)-f^{-1}(w)) \mbox{ } \forall \mbox{ } y ∈ I
.
Por tanto ,
donde es continua en y continua en .
Así que es continua en . Luego es derivable en y
.
Hola Belen me parece bien como desarrollas el problema, sin embargo estaría muy bien que especificaras bien tus variables con la relación de Cathéodory,para que no te pierdas ó más bien nos perdamos.--Luis Antonio (discusión) 17:29 27 nov 2012 (CST)
--Belen (discusión) 23:12 22 nov 2012 (CST)