Diferencia entre revisiones de «Compleja:z-ej-cap2.1»

De luz-wiki
Sin resumen de edición
Línea 1: Línea 1:
==Derivadas==
==Derivadas==
'''2.4) (Teorema de Rolle) Si <math>a,b \in\mathbb{R}</math> con  a<b  y <math> f:[a,b]\to\mathbb{R}</math> es continua, y además es derivable en (a,b), demuestre que si <math>f(a)=f(b)</math>, existe un <math>\xi\in(a,b)</math> donde <math>f</math> alcanza su máximo o mínimo.'''
:Demostración:
:Como f es continua en [a,b], entonces:
:<math> \exists x_{1},x_{2}\in[a,b] \textrm{ tal que } \forall x\in[a,b]\Rightarrow f(x_{1})\le f(x) \le f(x_{2}) </math>
:Si <math>f(x_{1})=f(x)</math> entonces <math>f</math> es constante y en este caso cualquier <math>x_{0}\in(a,b)</math> satisface <math> f´(x_{0})=0 </math>
:Si <math>x_{1}\in \{a,b\} \Rightarrow f(x_{1})=f(a)=f(b)</math>
::pero si: <math>f(x_{1}) \ne f(x_{2}) \Rightarrow f(x_{2})\ne f(a) \land  f(x_{2})\ne f(b) \Rightarrow  x_{2}\notin \{a,b\} \Rightarrow x_{2}\in (a,b) \textrm{ y } f´(x_{2})=0</math>
:Si <math>x_{2}\in \{a,b\} \Rightarrow x_{1}\notin \{a,b\} x_{1}\in (a,b) \textrm{ y } f´(x_{1})=0</math>
--[[Usuario:Cecilia Carrizosa Muñoz|cecy]] ([[Usuario discusión:Cecilia Carrizosa Muñoz|discusión]]) 21:15 27 nov 2012 (CST)
----


'''2.7. (Derivada de la función inversa para funciones reales). Usando la formulación de Carathéodory, demuestre que si <math>f:(a,b)\to \mathbb{R} </math> es continua e inyectiva y para <math>\xi ∈ (a,b), \mbox{  } f'(\xi)</math> existe y no es nula, para la inversa <math>g</math> de <math>f</math> se tiene que <math>g'(f(\xi))=\frac{1}{f'(\xi)}</math>.'''
'''2.7. (Derivada de la función inversa para funciones reales). Usando la formulación de Carathéodory, demuestre que si <math>f:(a,b)\to \mathbb{R} </math> es continua e inyectiva y para <math>\xi ∈ (a,b), \mbox{  } f'(\xi)</math> existe y no es nula, para la inversa <math>g</math> de <math>f</math> se tiene que <math>g'(f(\xi))=\frac{1}{f'(\xi)}</math>.'''

Revisión del 22:15 27 nov 2012

Derivadas

2.4) (Teorema de Rolle) Si con a<b y es continua, y además es derivable en (a,b), demuestre que si , existe un donde alcanza su máximo o mínimo.

Demostración:
Como f es continua en [a,b], entonces:
Si entonces es constante y en este caso cualquier satisface Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f´(x_{0})=0
Si
pero si: Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f(x_{1}) \ne f(x_{2}) \Rightarrow f(x_{2})\ne f(a) \land f(x_{2})\ne f(b) \Rightarrow x_{2}\notin \{a,b\} \Rightarrow x_{2}\in (a,b) \textrm{ y } f´(x_{2})=0
Si Error al representar (error de sintaxis): x_{2}\in \{a,b\} \Rightarrow x_{1}\notin \{a,b\} x_{1}\in (a,b) \textrm{ y } f´(x_{1})=0

--cecy (discusión) 21:15 27 nov 2012 (CST)



2.7. (Derivada de la función inversa para funciones reales). Usando la formulación de Carathéodory, demuestre que si es continua e inyectiva y para Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \xi ∈ (a,b), \mbox{ } f'(\xi) existe y no es nula, para la inversa de se tiene que .

Demostración.
Sea .
Como es derivable en , tenemos que Error al representar (error de sintaxis): f(x)-f(\xi)=\varphi(x)(x-\xi) \mbox{ } \forall \mbox{ } x∈(a,b),
donde es continnua en .
Consideremos que es un intervalo abierto contenido en el dominio de , entonces
Error al representar (error de sintaxis): y-w=f(f^{-1}(y))-f(f^{-1}(w))=\varphi(f^{-1}(y))(f^{-1}(y)-f^{-1}(w)) \mbox{ } \forall \mbox{ } y ∈ I .
Por tanto ,
donde es continua en y continua en .
Así que es continua en . Luego es derivable en y
.

Hola Belen me parece bien como desarrollas el problema, sin embargo estaría muy bien que especificaras bien tus variables con la relación de Cathéodory,para que no te pierdas ó más bien nos perdamos.--Luis Antonio (discusión) 17:29 27 nov 2012 (CST)

--Belen (discusión) 23:12 22 nov 2012 (CST)



--mfg-wiki (discusión) 17:32 15 nov 2012 (UTC)

Compleja:z-ej-cap1.0

Compleja:z-ej-cap1.1

Compleja:z-ej-cap1.2

Compleja:z-ej-cap1.3

Compleja:z-ej-cap1.4