Diferencia entre revisiones de «Compleja:z-ej-cap1.4»

De luz-wiki
Línea 1: Línea 1:
 +
==La esfera de Riemann y el plano extendido==
  
 +
'''1.67. Usando la proyección estereográfica demuestre que la proyección de un círculo S en <math> \mathbb{S}</math> corresponde a un círculo T en el plano <math> \mathbb{C}</math>. Demuestre que si S contiene al polo norte, entonces su proyección T en <math> \mathbb{C}</math> es una recta.'''
 +
 +
Un círculo en S en <math> \mathbb{S}</math> es la intersección de un plano con la esfera, por lo que sus puntos satisfacen una ecuación de la forma <math>Ax+By+Cz=D</math>.<br/>
 +
Por tanto este círculo es la imagen bajo la proyección estereográfica (2), satisfaciendo<br/>
 +
<math>A \left ( \frac{2x}{1+|w|^2} \right ) + B \left ( \frac{2y}{1+|w|^2} \right ) + c \left ( \frac{|w|^2 -1}{1+|w|^2} \right ) = D, </math><br/>
 +
donde <math> w = (x,y,0), </math> por tanto <math>|w|^2=x^2+y^2 </math> <br/>
 +
<math>\Rightarrow 2Ax+2By+(x^2+y^2-1)C=D(1+x^2+y^2)</math><br/>
 +
<math>\Rightarrow 2Ax+2By+Cx^2+Cy^2-C=Dx^2+Dy^2+D</math><br/>
 +
<math>\Rightarrow (C-D)x^2+2Ax+(C-D)y^2+2By-(C+D)=0</math><br/>
 +
 +
Si <math>C = D</math>, tenemos<br/>
 +
<math>2Ax+2By=2C </math>, i.e., <math>Ax+By=C </math>, la ecuación de una recta.
 +
 +
Si <math>C \ne D</math>, completando cuadrados: <br/>
 +
<math>x^2 + 2 \frac{A}{C-D} x + \left ( \frac{A}{C-D} \right )^2 + y^2 + 2 \frac{B}{C-D} y + \left ( \frac{B}{C-D} \right )^2 = \frac{C+D}{C-D} + \left ( \frac{A}{C-D} \right )^2 + \left ( \frac{B}{C-D} \right )^2 </math>.<br/>
 +
<math> \Rightarrow \left ( x + \frac{A}{C-D} \right )^2 + \left ( y + \frac{B}{C-D} \right )^2 = \frac {(C+D)(C-D)+A^2+B^2}{(C-D)^2} = \frac{C^2-D^2+A^2+B^2}{(C-D)^2}</math>.<br/>
 +
<math> \Rightarrow \left ( x + \frac{A}{C-D} \right )^2 + \left ( y + \frac{B}{C-D} \right )^2 = \frac{A^2+B^2+C^2-D^2}{(C-D)^2}</math>, la ecuación de un círculo con centro en <math>\left ( -\frac{A}{C-D},-\frac{B}{C-D} \right ) </math> y radio <math>r=\frac{\sqrt{A^2+B^2+C^2-D^2}}{C-D}</math>.
 +
 +
--[[Usuario:Belen|Belen]] ([[Usuario discusión:Belen|discusión]]) 22:51 22 nov 2012 (CST)
 +
 +
----
  
 
--[[Usuario:Mfgwiki|mfg-wiki]] ([[Usuario discusión:Mfgwiki|discusión]]) 17:32 15 nov 2012 (UTC)
 
--[[Usuario:Mfgwiki|mfg-wiki]] ([[Usuario discusión:Mfgwiki|discusión]]) 17:32 15 nov 2012 (UTC)

Revisión del 23:51 22 nov 2012

La esfera de Riemann y el plano extendido

1.67. Usando la proyección estereográfica demuestre que la proyección de un círculo S en \( \mathbb{S}\) corresponde a un círculo T en el plano \( \mathbb{C}\). Demuestre que si S contiene al polo norte, entonces su proyección T en \( \mathbb{C}\) es una recta.

Un círculo en S en \( \mathbb{S}\) es la intersección de un plano con la esfera, por lo que sus puntos satisfacen una ecuación de la forma \(Ax+By+Cz=D\).
Por tanto este círculo es la imagen bajo la proyección estereográfica (2), satisfaciendo
\(A \left ( \frac{2x}{1+|w|^2} \right ) + B \left ( \frac{2y}{1+|w|^2} \right ) + c \left ( \frac{|w|^2 -1}{1+|w|^2} \right ) = D, \)
donde \( w = (x,y,0), \) por tanto \(|w|^2=x^2+y^2 \)
\(\Rightarrow 2Ax+2By+(x^2+y^2-1)C=D(1+x^2+y^2)\)
\(\Rightarrow 2Ax+2By+Cx^2+Cy^2-C=Dx^2+Dy^2+D\)
\(\Rightarrow (C-D)x^2+2Ax+(C-D)y^2+2By-(C+D)=0\)

Si \(C = D\), tenemos
\(2Ax+2By=2C \), i.e., \(Ax+By=C \), la ecuación de una recta.

Si \(C \ne D\), completando cuadrados:
\(x^2 + 2 \frac{A}{C-D} x + \left ( \frac{A}{C-D} \right )^2 + y^2 + 2 \frac{B}{C-D} y + \left ( \frac{B}{C-D} \right )^2 = \frac{C+D}{C-D} + \left ( \frac{A}{C-D} \right )^2 + \left ( \frac{B}{C-D} \right )^2 \).
\( \Rightarrow \left ( x + \frac{A}{C-D} \right )^2 + \left ( y + \frac{B}{C-D} \right )^2 = \frac {(C+D)(C-D)+A^2+B^2}{(C-D)^2} = \frac{C^2-D^2+A^2+B^2}{(C-D)^2}\).
\( \Rightarrow \left ( x + \frac{A}{C-D} \right )^2 + \left ( y + \frac{B}{C-D} \right )^2 = \frac{A^2+B^2+C^2-D^2}{(C-D)^2}\), la ecuación de un círculo con centro en \(\left ( -\frac{A}{C-D},-\frac{B}{C-D} \right ) \) y radio \(r=\frac{\sqrt{A^2+B^2+C^2-D^2}}{C-D}\).

--Belen (discusión) 22:51 22 nov 2012 (CST)


--mfg-wiki (discusión) 17:32 15 nov 2012 (UTC)

Compleja:z-ej-cap1.0

Compleja:z-ej-cap1.1

Compleja:z-ej-cap1.2

Compleja:z-ej-cap1.3