Diferencia entre revisiones de «Compleja:z-ej-cap1.2»

De luz-wiki
Sin resumen de edición
Sin resumen de edición
Línea 1: Línea 1:
==Sucesiones y series de números complejos==
==Sucesiones y series de números complejos==
1.29) '''Si <math>{z_n}</math> es una sucesión convergente en <math>\mathbb{C}</math>, demuestre que su límite es único. Si <math>z_{n}</math> y<math>w_{n}</math> son dos sucesiones convergentes, con límites <math>L_{1} y L_{2}</math>, respectivamente, demuestre que:
:1)La suma de las sucesiones <math>{a_n}+b_{n}</math> converge a <math>L_{1}+L_{2}</math>
:2)El producto de las sucesiones <math>{a_n}b_{n}</math>converge a <math>L_{1}L_{2}</math>
:3)El cociente (cuando está definido) de las sucesiones <math> \frac{a_{n}}{b_{n}}</math> converge a <math> \frac{L_{1}}{L_{2}} si L_{2}\ne0</math>
'''Demostración'''
:'''Primero demostraremos que el límite es único'''.
::Supongamos que la sucesión <math>(a_{n})_{n}</math> tuviera dos límites distintos, digamos <math>a\neq b</math>
:::Sea <math>\epsilon ={\frac{|a-b|}{4}}</math>>0. Entonces, por definición, existen números naturales <math>n_{1} y n_{2}</math> tales que <math>|a-a_{n}|<\epsilon </math> si <math>n>n_{1}</math> y <math>|b-b_{n}|<\epsilon </math> si <math>n>n_{2}</math>.
:::Llamando <math>n_{0}=máx\{n_{1},n_{2}\}</math> se debe cumplir que:
<math>|a-a_{n}|<\epsilon </math> si <math>n>n_{0}</math> y <math>|b-b_{n}|<\epsilon
</math> si <math>n>n_{0}</math>. De donde se deduce que si n>n_{0} ha de ser
:::<math>|a-b|=|(a+b)-(a_{n}+b_{n})|\leq |a-a_{n}|+|b-b_{n}| = \epsilon +\epsilon =2{\frac{|a-b|}{4}}={\frac{|a-b|}{2}}</math>
:::<math>\therefore 1<{\frac{1}{2}}</math> es una contradicción, entonces '''el límite es único.'''
'''1)'''Sea <math>\epsilon>0</math>, existen enteros positivos <math>n_{1} </math> y <math>n_{2}</math> tales que
<math>|a-a_{n}|<{\frac{\epsilon}{2}} </math> si <math> n>n_{1}</math> y <math>|b-b_{n}|<{\frac{\epsilon}{2}} </math> si <math>n>n_{2}</math>.
:Tomando <math>n_{0}=máx\{n_{1},n_{2}\}</math> se tiene:
::<math>|(a+b)-(a_{n}+b_{n})|\leq |a-a_{n}|+|b-b_{n}| \leq {\frac{\epsilon}{2}}+{\frac{\epsilon}{2}} = \epsilon</math> para cada <math>n>n_{0}</math>
::<math>\therefore a+b=lím_{n}(a_{n}+b_{n})</math>
'''2)''' Sea <math>a_{n}</math> una sucesión convergente, entonces existe un <math>\alpha>0</math> t.q. <math>|a_{n}|<\alpha </math> <math>\forall n \in\mathbb{N}</math>
::Entonces
::<math>|ab-a_{n}b_{n}|= |ab-a_{n}b+a_{n}b-a_{n}b_{n})|
= |(a-a_{n})b+(b-b_{n})(a_{n})|
\leq |a-a_{n}||b|+|(b-b_{n})||a_{n}|
\leq |a-a_{n}||b|+|(b-b_{n})|\alpha</math>
::Sin embargo <math> a = lim_{n}a_{n} \textrm{  y  } b=lim_{n}b_{n} , \epsilon>0 \textrm{  existen  } n_{1},n_{2}\in \mathbb{N} \qquad</math> tal que
::<math>|a-a_{n}|<{\frac{\epsilon}{2(|b|+1)}} \textrm{ si  } n>n_{1} \qquad y \qquad |b-b_{n}|<{\frac{\epsilon}{2\alpha}} \textrm{ si  }n>n_{2}</math>
::Entonces
::<math>|ab-a_{n}b_{n}|< \frac{\epsilon}{2(|b|)} + \frac{\epsilon \alpha}{2\alpha} = \epsilon</math>
::tomando <math>n_{0}= máx\{n_{1},n_{2}\}</math> se tiene que <math> ab = lím_{n}(a_{n}b_{n}) </math>
'''3)'''Consideremos una cota inferior para la sucesión <math>(b_{n})_{n}</math> en lugar de una acotación superior.
::Puesto que <math>b\neq</math> 0 y |<math>b|=lím_{n}|b_{n}|</math>, sea <math>\epsilon ={\frac{|b|}{2}}</math> existe <math>n_{1}\in \mathbb{N}</math> tal que <math>\\ \alpha:={\frac{|b|}{2}}<|b_{n}|</math>, para <math>n>n_{1}</math>.
::Si <math>n>n_{1}</math>, obtenemos:
:<math> \bigg|\frac{a}{b}- \frac{a_{n}}{b_{n}}\bigg| =  \frac{|ab_{n}-ba_{n}|}{|b||b_{n}|} = \frac{|ab_{n}-ab+ab-a_{n}b|}{|b||b_{n}|} \le \frac{|a||b_{n}-b|+|b||a-a_{n}|}{|b||b_{n}|} \le \frac{|a||b_{n}-b|+|b||a-a_{n}|}{|b|\alpha} </math>
:: Sea <math>\epsilon>0 \textrm{  existen  } n_{2},n_{3}\in \mathbb{N} \qquad</math>tal que:
:<math>|b-b_{n}|< \frac{\epsilon}{2(|\alpha|+1)}|b|\alpha \textrm{ si } n>n_{2} \textrm{  y  }|a-a_{n}|<\frac{\epsilon}{2|b|}|a|\alpha \textrm{ si } n>n_{3} </math>
::Si tomamos <math> n_{0}:=max\{n,n_{2},n_{3}\} </math> debe cumplirse que
: <math>\bigg|\frac{a}{b}- \frac{a_{n}}{b_{n}}\bigg| \le \frac{|a||b_{n}-b|+|b||a-a_{n}|}{|b|\alpha} < \frac{\epsilon}{2(|\alpha|+1)}|\alpha|+\frac{\epsilon}{2|b|}|b| < \epsilon</math>
::Para <math>n>n_{0}</math>
:<math> \lim_{n \rightarrow 00}\frac{a_{n}}{b_{n}} = \frac{a}{b} \qquad b_{n}\ne0 \textrm{ y } b\ne0</math>
--[[Usuario:Cecilia Carrizosa Muñoz|cecy]] ([[Usuario discusión:Cecilia Carrizosa Muñoz|discusión]]) 21:12 27 nov 2012 (CST)
----


'''1.35 Demuestre que si <math>\sum_{n=0}^{\infty} z_{n}</math>  es convergente, entonces la sucesión <math>\{z_{n}\}</math> converge a 0.La afirmación recíproca es falsa: considere la ''serie armónica'' <math> \sum_{n=0}^{\infty} 1/n </math>'''
'''1.35 Demuestre que si <math>\sum_{n=0}^{\infty} z_{n}</math>  es convergente, entonces la sucesión <math>\{z_{n}\}</math> converge a 0.La afirmación recíproca es falsa: considere la ''serie armónica'' <math> \sum_{n=0}^{\infty} 1/n </math>'''

Revisión del 22:12 27 nov 2012

Sucesiones y series de números complejos

1.29) Si es una sucesión convergente en , demuestre que su límite es único. Si y son dos sucesiones convergentes, con límites , respectivamente, demuestre que:

1)La suma de las sucesiones converge a
2)El producto de las sucesiones converge a
3)El cociente (cuando está definido) de las sucesiones converge a

Demostración

Primero demostraremos que el límite es único.
Supongamos que la sucesión tuviera dos límites distintos, digamos
Sea >0. Entonces, por definición, existen números naturales tales que si y si .
Llamando Error al representar (error de sintaxis): n_{0}=máx\{n_{1},n_{2}\} se debe cumplir que:

si y si . De donde se deduce que si n>n_{0} ha de ser

es una contradicción, entonces el límite es único.


1)Sea , existen enteros positivos y tales que si y si .

Tomando Error al representar (error de sintaxis): n_{0}=máx\{n_{1},n_{2}\} se tiene:
para cada
Error al representar (error de sintaxis): \therefore a+b=lím_{n}(a_{n}+b_{n})


2) Sea una sucesión convergente, entonces existe un t.q.

Entonces
Sin embargo tal que
Entonces
tomando Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): n_{0}= máx\{n_{1},n_{2}\} se tiene que Error al representar (error de sintaxis): ab = lím_{n}(a_{n}b_{n})


3)Consideremos una cota inferior para la sucesión en lugar de una acotación superior.

Puesto que 0 y |Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): b|=lím_{n}|b_{n}| , sea existe tal que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \\ \alpha:={\frac{|b|}{2}}<|b_{n}| , para .
Si , obtenemos:
Sea tal que:
Si tomamos debe cumplirse que
Para

--cecy (discusión) 21:12 27 nov 2012 (CST)



1.35 Demuestre que si es convergente, entonces la sucesión converge a 0.La afirmación recíproca es falsa: considere la serie armónica

Demostración: Para k grande entonces:

--Cesar (discusión) 20:55 27 nov 2012 (CST)


1.36. Demuestre que toda serie absolutamente convergente es convergente. Dé un contraejemplo de una serie convergente que no es absolutamente convergente.

Recordemos que una serie se dice absolutamente convergente si y sólo si converge.

Proposiciones preliminares:

a) Si converge, converge y , entonces converge.
Este resultado es consecuencia del criterio de comparación de las sucesiones.

b) Si converge, entonces converge.
Es consecuencia de a) usando que .

c) Sea con Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): a_n, b_n ∈ \mathbb{R} , entonces converge si y sólo si converge y converge.
Esto es consecuencia de la proposición análoga para sucesiones y de la definición de serie.

Demostración.

Sea con Error al representar (error de sintaxis): a_n, b_n ∈ \mathbb{R} y convergente.
Como , por la proposición a) se deduce que converge.
Ahora, por la proposición b) concluímos que
converge. (A)
Y de forma análoga vemos que converge. (B)

Teniendo los resultados (A) y (B) y con la proposición c), tenemos que
converge.

Por otro lado, si tomamos la serie
, ésta converge, pero
.
Y con ello vemos que una serie convergente no es necesariamente absolutamente convergente.

--Belen (discusión) 19:48 22 nov 2012 (CST)


1.40 Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \alpha ∈ \mathbb{R} y , demuestre que .

Proposición preliminar:

a) Sean Error al representar (error de sintaxis): \left\{ x_n \right\}, \left\{ y_n \right\}, \left\{ z_n \right\} \subseteq \mathbb{R} \mbox{ tal que } \lim \left\{x_n \right\} = a = \lim \left\{z_n \right\}, \mbox{ si } x_n \le y_n \le z_n \forall n ∈ \mathbb{N} \Rightarrow \lim \left\{y_n \right\} = a.

Demostración:
Tenemos que
Además

De aquí,

Demostración:

Sean

Primero supongamos que
Ya que , por la proposición a),
.

El recíproco:
Sea convergente, i.e., .
Supongamos
Tenemos que (*)
Por otra parte, fijemos .
Como
De esto y con (*) tenemos que
y como esto sucede .

--Belen (discusión) 21:13 22 nov 2012 (CST)



--mfg-wiki (discusión) 17:32 15 nov 2012 (UTC)

Compleja:z-ej-cap1.0

Compleja:z-ej-cap1.1