Compleja:ej-cap3.4

De luz-wiki
Revisión del 05:04 14 dic 2010 de Carlos López Cobá (discusión | contribs.)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)

2.-Calcule Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \int_{-\infty}^\infty\frac{x+1}{x^4+1}\,dx

Tomamos la función compleja de la cual tomamos las raíces para determinar los polos.Los cuales estan dados por:

, , ,

por tanto,

para obtener los residuos aplicamos

Aplicando la regla de L´ Hopital obtenemos

Aplicando la fórmula de Euler llegamos al resultado de la integral real.

--Oscar Rodriguez 17:40 9 dic 2010 (UTC)

p.199

mfg-wiki 15:01 30 nov 2010 (UTC)


3. Calcule .

Primero haciendo la sustitución y

. Dicha sustitución proviene del hecho que , y .

Continuando con el problema, obtenemos la integral


Simplificando queda

o

Luego buscamos los polos del denomidador osea los polos de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {{z}^{2}}-4iz-1\, los cuales son Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z=\overset{+}{-}\sqrt{3}i+2i\,

solo tomamos el polo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): -\sqrt{3}i+2i

porque es el único que esta dentro del circulo de radio uno, el cual es la región sobre la que estamos integrando.


Ahora obtenemos el Residuo de la funcion que es igual a

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \operatorname{Re}s(f(z),-\sqrt{3}i+2i)=\underset{z\to (-\sqrt{3}i+2i)}{\mathop{\lim }}\,\frac{z-(-\sqrt{3}i+2i)}{{{z}^{2}}-4iz-1}=\left( -\frac{i}{2\sqrt{3}i} \right)

hay que recordar que sacamos un Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): -2\, de la integral por lo que al multiplicar ese Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): -2\, por Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): -\frac{i}{2 \sqrt{3}}

obtenemos Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{2i}{2 \sqrt{3}}

y finalmente por la definición

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{1}{2\pi i}\int _cf(z)dz=\left\{\text{Res}\left(f(z),z_1\right)+\text{...}+\text{Res}\left(f(z),z_k\right)\right\}

la integral es igual a Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{2\pi}{\sqrt{3}}


4. Calcule Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \int_0^{2\pi}\frac{1}{\left(1-2b\text{cos}[\theta]+b^2\right)}\,d\theta , Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): b>1\,

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \int_0^{2\pi}\frac{1}{\left(1-2b\text{cos}[\theta]+b^2\right)}\,d\theta , Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): b>1\, al sustituir Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \text{cos}[\theta]=\frac{1}{2}\left(z+\frac{1}{z}\right)

y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): d\theta =\frac{dz}{iz} . La sustitución proviene del hecho que

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \cos \left[ \theta \right]=\frac{{{e}^{i\theta }}-{{e}^{-i\theta }}}{2} y

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z={{e}^{i\theta }}\, y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): dz=i{{e}^{i\theta }}d\theta\, .

Continuando con el problema, obtenemos la integral

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \int _c\frac{1}{i(1-z b)(z-b)}dz

Buscasmos los polos de la función Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \frac{1}{i(1-zb)(z-b)}

obtenemos que los dos polos que son

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z=b\, y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z=\frac{1}{b} como


Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): b>1\,

entonces el unico polo que estaría en la región que

nos interesa es Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z=\frac{1}{b}

por lo tanto solo necesitamos calcular el residuo de


Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): f(z)\, para este polo.


Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \operatorname{Re}s(f(z),\tfrac{1}{b})=li{{m}_{z\longrightarrow \left( \frac{1}{b} \right)}}\frac{z-\left( \frac{1}{b} \right)}{i(1-zb)(z-b)}=\left( -\frac{i}{-1+{{b}^{2}}} \right)


finalmente la integral



es igual a

--Pedro Pablo Ramírez Martínez 14:18 9 dic 2010 (UTC)


9. Pruebe que

pero el coseno es una función par por lo que

asi por lo que la función es par.

De los cursos de cálculo se sabe que:

Para integrales de funciones pares de -L a L con periodo 2L

La integral calcula el area bajo la curva sobre medio periodo, pero al multiplicar por 2, obtenemos el area total de un periodo entero.

La integral calcula el area bajo la curva de un periodo completo.

Por lo tanto

--Carlos López Cobá 10:04 14 dic 2010 (UTC)



Compleja:ej-cap1.1 Compleja:ej-cap1.2 Compleja:ej-cap1.3 Compleja:ej-cap1.4

Compleja:ej-cap2.1 Compleja:ej-cap2.2 Compleja:ej-cap2.3 Compleja:ej-cap2.4 Compleja:ej-cap2.5

Compleja:ej-cap3.1 Compleja:ej-cap3.2 Compleja:ej-cap3.3 Compleja:ej-cap3.4