Compleja:ej-cap1.4

De luz-wiki


EJERCICIOS 1.4.1

1.-Demuestre la identidad .



sean y , dos funciones definidas y derivables en un mismo punto .





si se suma y se resta en el numerador , la fraccion anterior no varia.






sacando factor comun en los dos primeros sumandos, y , en los otros dos.





.



si ahora se toman limites cuando tiende a cero.


, pues es continua en ya que es derivable en .


, por definicion de derivada.


, al no depender de .



2.- Encuentre una región donde sea holomorfa, calcule la derivada.

Solución

Utilizando la regla de derivación para cocientes



se tiene lo siguiente




es holomorfa en


--Dali 01:56 15 nov 2009 (UTC)




3 Sea f la funcion de en en definida por (en notación compleja ),calcule su matriz jacobiana.


por definicion la matriz jacodiana es

partiendo de

donde y

Usando las definiciones obtenemos su matriz jacobiana, obteniendo sus parciales.

, , , ,

Construyendo su matriz jacobiana tenemos finalmente.


--Karla 22:08 15 nov 2009 (UTC)Karla