Compleja:ej-cap1.3

De luz-wiki

Seccion 1.3.1

SECCION 1.3.3

1.Calcule todos los valores \((1-i)^{4-2i}\) \( i^w\) \(z^i\)

recordando

\(lnab=lna+lnb\) , \(lna^b=blna\) y \(e^{lna}=a\)

\((1-i)^{4-2i}\) = \(e^{ln(1-i)^{4-2i}}\)

\( e^{(4-2i)ln(1-i)}\)

\(ln(1-i)= ln\sqrt{2} -i\pi/4\)

sustituyendo \(ln(1-i)\)

\(e^{(4-2i)(1/2ln2+i(-\pi/4+2k\pi)}\) Nota: encontrando todos los posibles valores proponemos \(2k\pi\)

\(e^{2ln2+2(-\pi/4+2k\pi)+ i4((-\pi/4+2k\pi)-ln2)}\)

\(e^{ln4+((4k-1)/2)\pi+ i(8k-1)\pi-iln2}\)

\(e^{ln4}e^{(4k-1/2)\pi}e^{i(8k)\pi}e^{-i\pi}e^{-iln2}\)

donde

\(e^{i(8k)\pi}\) y \(e^{-i\pi}\) valen 1 \(k=1\) los valores encontrados seran multiplos de \(\pi\)

\(-4 e^{(4k-1/2)\pi}e^{-iln2}\)

\(-4 e^{((4k-1/2)\pi-iln2)}\) donde k pertenece a los numeros naturales.

ahora encontrando los valores \( i^w\)

\( i^w = e ^{lni^{w}}\) donde \(lni=ln1+i\pi/2\) Nota: encontrando todos los posibles valores proponemos \(2k\pi\)

\( e ^{w+i(\pi/2+2k\pi}\)

\(e^{iw((4k+1)/2)\pi}\) para cualquier w

finalmente calculando los valores \(z^i\)

\(z^i= e^{ilnz}\)

\(e^{i(ln|z|+iargz)}\)

\(e^{-(argz+iln|z|}\) para cualquier z

--Karla 19:18 7 nov 2009 (UTC)Karla.





3.- Demuestre que si \(w\in\mathbb{R}\), entonces \(\left|Z^{w}\right|=\left|Z\right|^{w}\).


Solución.


Sea \(z^{w}=r^{w}\exp\left(iw\theta\right)\)


Entonces


\(\left|z^{w}\right|=\left|r^{w}\exp\left(iw\theta\right)\right|=\left|\left|z\right|^{w}\exp\left(iw\theta\right)\right| \)

pues

\( r=\left|z\right| \)



como

\( \left|\exp\left(i\theta\right)\right|=\sqrt{cos^{2}\theta+sen^{2}\theta}=1 \)


si tomamos el cambio \(\gamma=w\theta\!\) obtenemos que


\(\left|z^{w}\right|=\left|r^{w}\exp\left(iw\theta\right)\right|=\left|\left|z\right|^{w}\exp\left(iw\theta\right)\right|=\left|\left|z\right|^{w}\right|\left|\exp\left(i\gamma\right)\right|=\left|\left|z\right|^{w}\right|\left(1\right)=\left|z\right|^{w} \)


Pues \(w\in\mathbb{R}\).



--Dali 02:23 15 nov 2009 (UTC)






4. Exhiba \( z, w \in \mbox{C} \) para las cuales no se cumpla \(\big | z^w\big | = \big | z\big | ^{\big | w\big |} \).


Sean \(z, w \in \mbox{C} \) de la forma \(w = a + ib \) \(z = x + iy\)

como \(\big |w\big | \in \mbox{R}\) se cumple \(\big |z\big |^{\big |w\big |} = \big |{z^{\big |w\big |}}\big |\)

desarrollamos\[\big | z^w\big | = \big |{z^{\big |w\big |}}\big |\]

\(e^{w(log\big |z\big | + i argz)} = e^{\big |w\big |(log\big |z\big | + i argz)}\)

\(\Longleftrightarrow \) \(\qquad w(log\big |z\big | + i argz) = \big |w\big |(log\big |z\big | + i argz)\)

\( \Rightarrow w = \big |w\big |\)

Esta igualdad se cumple para \( w = a + ib \) con \( b = 0 \)

por lo tanto \(\big | z^w\big | = \big | z\big | ^{\big | w\big |} \) no se cumple para \( w = a + ib \) con \(b \ne 0\)--Gabita 20:22 12 nov 2009 (UTC)




SECCION 1.3.4

1. Pruebe la identidad \(\ {cosh t= cos(it)}\).


Sabemos que


\(cos t={ \frac{e^{it}+e^{-it}}{2}}\)


\(cosh t={ \frac{e^{t}+e^{-t}}{2}}\)


Entonces


\(cos (it)={ \frac{e^{i(it)}+e^{-i(it)}}{2}}=\frac{1}{2}(e^{-t}+e^{t})=\frac{1}{2}(e^{t}+e^{-t})=cosh t\)


\(\therefore \)


\(\ {cosh t= cos(it)}\)



--Ralf Gutierrez 19:16 10 nov 2009 (UTC)



3. Pruebe el tercer inciso de la Proposición 1.3.9.


Dadas \(\ z,w \in C\), se cumple la siguiente igualdad


\(\ {cos(z+w)=cosz {cosw}-senz {senw}}\).


Sabemos que


\(cos z={ \frac{e^{iz}+e^{-iz}}{2}}\)


\(sen z={ \frac{e^{iz}-e^{-iz}}{2i}}\)


Entonces


\(cosz {cosw}-senz {senw}={ \frac{e^{iz}+e^{-iz}}{2}}\cdot {\frac{e^{iw}+e^{-iw}}{2}}-{\frac{e^{iz}-e^{-iz}}{2i}}\cdot {\frac{e^{iw}-e^{-iw}}{2i}}\)


\(=\frac{1}{4}\left [e^{i(z+w)}+e^{-i(z+w)}+e^{i(z-w)}+e^{-i(z-w)}\right ]+\frac{1}{4}\left [e^{i(z+w)}+e^{-i(z+w)}-e^{i(z-w)}-e^{-i(z-w)}\right ]\)


\(=\frac{1}{2}\left [e^{i(z+w)}+e^{-i(z+w)}\right ]=cos(z+w)\)


\(\therefore \)


\(\ {cos(z+w)=cosz {cosw}-senz {senw}}\)



--Ralf Gutierrez 19:18 10 nov 2009 (UTC)






KARLA: yo hago los dos ejercicios que faltan en esta sección, creo que son el 2 y 4, es asi? atte. Gaby Durán por cierto no he asistido a clase por problemas familiares, pero estoy trabajando.

--Karla 19:21 7 nov 2009 (UTC)Karla