Compleja:ej-cap1.1

De luz-wiki

1. Demuestre que el producto de números complejos cumple con la ley asociativa

Sean \( z = a + i b, \quad w = c + i d, \quad s = e + i f \, \quad \) con \( \quad a,b,c,d,e,f \in \mbox{R}\)


Por demostrar \( (zw)s = z(ws)\,\)


\((zw)s = [(a + i b)(c + i d)](e + i f) = [(ac - bd) + i (bc + ad)](e + i f)\,\)


\(=[e(ac - bd) - f(bc + ad)] + i [e(bc + ad) + f(ac - bd) = (ace - bde - bcf - adf) + i (bce + ade + acf - bdf)\, \)


Por otra parte

\(z(ws) = (a + i b)[(c + i d)(e + i f)] = (a + i b)[(ce - df) + i (de + cf)]\,\)


\(=[a(ce - df) - b(de + cf)] + i [b(ce - df) + a(de + cf)] = (ace - bde - bcf - adf) + i (bce + ade + acf - bdf)\,\)


Entonces se cumple \( (zw)s = z(ws)\,\).


--Gabita 22:15 28 sep 2009 (UTC)


1.1.2

1. Demuestre que \(\left|\frac{z}{w}\right| = \frac{\left|z\right|}{\left|w\right|}\)

Sean \( z = a + i b \quad y \quad w = c + i d\,\)


\(\left|\frac{z}{w}\right|= \left|\frac{a + i b }{c + i d}\right|= \left|\frac{(a + i b)(c - i d)}{(c + i d)(c - i d)}\right| \)


\(=\left|\frac{(ac + bd) + i (bc - ad)}{c^2 + d^2}\right|= \sqrt{\bigg ( \frac{ac + bd}{c^2 + d^2}\bigg )^2 + \bigg (\frac{bc - ad}{c^2 + d^2}\bigg )^2} = \frac{1}{c^2 + d^2}\sqrt{ (ac + bd)^2 + (bc - ad)^2 } \)


\(=\frac{1}{c^2 + d^2}\sqrt{a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2 } = \sqrt{\Bigg [\frac{a^2 (c^2 + d^2)}{(c^2 + d^2)^2}\Bigg ] + \Bigg [\frac{b^2 (c^2 + d^2)}{(c^2 + d^2)^2}\Bigg ] } = \sqrt{\frac{a^2 + b^2}{c^2 + d^2}} \)


Por otra parte


\(\frac{\left|z\right|}{\left|w\right|} = \frac{\left|a + i b\right|}{\left|c + i d\right|} = \sqrt{\frac{a^2 + b^2}{c^2 + d^2}} = \left|\frac{z}{w}\right|\)

--Gabita 22:15 28 sep 2009 (UTC)



2. Exprese \(\overline{\left(\frac{\left(2+3i\right)^2}{4+i}\right)}\)de la forma \(x+iy\)


Por las propiedades \(\overline{\left ( \frac{z}{w} \right )}=\frac\bar{z}\bar{w}\) , \(\overline{zw}=\bar{z}\bar{w}\)


\(\frac{\overline{\left ({2+3i}\right)^2}}{\overline{\left({4+i}\right)}}=\frac{\overline{\left ({2+3i}\right)}\overline{\left ({2+3i}\right)}}{\overline{\left({4+i}\right)}}=\frac{\left(2-3i\right)\left(2-3i\right)}{\left(4-i\right)}\)


Simplificando, se obtiene\[\frac{4-6i-6i-9}{4-i}=\frac{-5-12i}{4-i}\]


Resolviendo la divicion de números complejos, de la forma\[\frac{z}{w}=\frac{z\bar{w}}{w\bar{w}}=\frac{z\bar{w}}{\left|w\right|^2}\]\[\frac{\left(-5-12i\right)\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}=\frac{-20-5i-48i+12}{17}=\frac{-8-53i}{17}\]


=\(-\frac{8}{17}-\frac{53}{17}i\).


--Josua Da Vinci 23:00 28 sep 2009 (UTC)



5. Sean \(z_1 , z_2 , z_3 \in \mathbb{C}\) tales que cumplen \(\frac{z_2 - z_1}{z_3 - z_1} = \frac{z_1 - z_3}{z_2 - z_3}\), demuestre que estos tres puntos determinan un triángulo equilátero.

Figura 1

Tenemos que

\(\left | \frac{z_2 - z_1}{z_3 - z_1} \right | = \left | \frac{z_1 - z_3}{z_2 - z_3} \right |,\qquad (1)\)

y, por lo tanto,

\(\frac{|z_2 - z_1|}{|z_3 - z_1|} = \frac{|z_1 - z_3|}{|z_2 - z_3|}.\qquad (2)\)

De la Figura 1, vemos que cada una de esas normas de números complejos son exactamente los segmentos de recta que constituyen el triángulo ABC, a saber:

\(\left . \begin{matrix}|z_2 - z_1| = A\\ |z_3 - z_1| = B = |z_1 - z_3|\\ |z_2 - z_3| = C\\ \end{matrix} \right \} \qquad (3)\)

De (2) y (3) tenemos que:

\(\frac{A}{B} = \frac{B}{C}. \qquad (4)\)

Por triángulos semejantes, se tiene que el ángulo \(\beta\) es igual al ángulo \(\gamma\) y éste a su vez al ángulo \(\alpha\), es decir,

\(\alpha = \beta = \gamma. \qquad (5)\)


== 1.1.7 == Demuestre que en un paralelogramo la suma de los cuadrados de las diagonales es la suma de los cuadrados de los lados.

Recordando Pitágoras c^2 = a^2 + b^2 (para magnitudes reales) Demo.jpg


Tomamos dos numeros complejos

a = b + ic d = e + if

Para poder demostrar que la suma de los cuadrados de los lados sea igual a la suma del cuadrado de las diagonales necesitamos obtener la magnitud de los numeros complejos anteriores "a" y "d".

|a| = \(\sqrt{ b^2+c^2}\) que corresponde a la norma de "a". |d| = \(\sqrt{ e^2+f^2}\) que corresponde a la norma de "d".

si |a|^2 = b^2 + c^2

  |d|^2 = e^2 + f^2


Ahora definimos la diagonal como |h| con componentes |a| y|d| obtenemos la magnitud de |h| y tenemos

|h|= \(\sqrt{|a|^2+|d|^2}\)

reacomodando.

|h|^2= |a|^2 + |d|^2



--mfg-wiki 21:27 25 sep 2009 (UTC)



1.1.3

1.1.4

--mfg-wiki 21:27 25 sep 2009 (UTC)