Diferencia entre revisiones de «Ondas: conservacion»

De luz-wiki
Sin resumen de edición
Sin resumen de edición
Línea 3: Línea 3:
Borowitz, Fundamentals of Quantum Mechanics, W.A. Benjamin, NY (1967),  
Borowitz, Fundamentals of Quantum Mechanics, W.A. Benjamin, NY (1967),  
pp.71-74}}
pp.71-74}}
\[
 
<math>\frac{\partial ^2\psi }{\partial z^2}-\frac{1}{v^2}\frac{\partial ^2\psi  
<math>\frac{\partial ^2\psi }{\partial z^2}-\frac{1}{v^2}\frac{\partial ^2\psi  
}{\partial t^2}=0</math>
}{\partial t^2}=0</math>
\]
 
multiply by $\frac{\partial \psi }{\partial t}=\dot {\psi }$, then $\dot  
multiply by <math>\frac{\partial \psi }{\partial t}=\dot {\psi }</math>, then <math>\dot  
{\psi }\left( {\frac{\partial ^2\psi }{\partial  
{\psi }\left( {\frac{\partial ^2\psi }{\partial  
z^2}-\frac{1}{v^2}\frac{\partial \dot {\psi }}{\partial t}} \right)=0$.  
z^2}-\frac{1}{v^2}\frac{\partial \dot {\psi }}{\partial t}} \right)=0</math>.  
Notice that $\frac{\partial }{\partial t}\left( {\frac{\partial \psi  
Notice that <math>\frac{\partial }{\partial t}\left( {\frac{\partial \psi  
}{\partial z}} \right)^2=2\frac{\partial \psi }{\partial z}\frac{\partial  
}{\partial z}} \right)^2=2\frac{\partial \psi }{\partial z}\frac{\partial  
\dot {\psi }}{\partial z}$ and $\frac{\partial }{\partial z}\left( {\dot  
\dot {\psi }}{\partial z}</math> and <math>\frac{\partial }{\partial z}\left( {\dot  
{\psi }\frac{\partial \psi }{\partial z}} \right)=\dot {\psi }\frac{\partial  
{\psi }\frac{\partial \psi }{\partial z}} \right)=\dot {\psi }\frac{\partial  
^2\psi }{\partial z^2}+\frac{\partial \psi }{\partial z}\frac{\partial \dot  
^2\psi }{\partial z^2}+\frac{\partial \psi }{\partial z}\frac{\partial \dot  
{\psi }}{\partial z}$ so that their difference yields $\textstyle{1 \over  
{\psi }}{\partial z}</math> so that their difference yields <math>\textstyle{1 \over  
2}\frac{\partial }{\partial t}\left( {\frac{\partial \psi }{\partial z}}  
2}\frac{\partial }{\partial t}\left( {\frac{\partial \psi }{\partial z}}  
\right)^2-\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial  
\right)^2-\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial  
\psi }{\partial z}} \right)=-\dot {\psi }\frac{\partial ^2\psi }{\partial  
\psi }{\partial z}} \right)=-\dot {\psi }\frac{\partial ^2\psi }{\partial  
z^2}$; whereas the second time derivative may be written as $\dot {\psi  
z^2}</math>; whereas the second time derivative may be written as <math>\dot {\psi  
}\frac{\partial \dot {\psi }}{\partial t}=\textstyle{1 \over  
}\frac{\partial \dot {\psi }}{\partial t}=\textstyle{1 \over  
2}\frac{\partial \dot {\psi }^2}{\partial t}$, so that the equation is:
2}\frac{\partial \dot {\psi }^2}{\partial t}</math>, so that the equation is:
\[
 
\textstyle{1 \over 2}\frac{\partial }{\partial t}\left( {\frac{\partial \psi  
<math>\textstyle{1 \over 2}\frac{\partial }{\partial t}\left( {\frac{\partial \psi  
}{\partial z}} \right)^2-\frac{\partial }{\partial z}\left( {\dot {\psi  
}{\partial z}} \right)^2-\frac{\partial }{\partial z}\left( {\dot {\psi  
}\frac{\partial \psi }{\partial z}} \right)+\frac{1}{v^2}\textstyle{1 \over  
}\frac{\partial \psi }{\partial z}} \right)+\frac{1}{v^2}\textstyle{1 \over  
2}\frac{\partial \dot {\psi }^2}{\partial t}=0
2}\frac{\partial \dot {\psi }^2}{\partial t}=0</math>
\]
 
grouping temporal and spatial derivatives, we obtain a continuity type  
grouping temporal and spatial derivatives, we obtain a continuity type  
equation:
equation:
\begin{equation}
 
\label{eq1}
<math>\frac{\partial }{\partial t}\textstyle{1 \over 2}\left[ {\left(  
\frac{\partial }{\partial t}\textstyle{1 \over 2}\left[ {\left(  
{\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2}  
{\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2}  
\right]-\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi  
\right]-\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi  
}{\partial z}} \right)=0
}{\partial z}} \right)=0</math>
\end{equation}
 
and thus a density and flux may be defined as ${e}'=\textstyle{1 \over  
and thus a density and flux may be defined as ${e}'=\textstyle{1 \over  
2}\left[ {\left( {\frac{\partial \psi }{\partial z}}  
2}\left[ {\left( {\frac{\partial \psi }{\partial z}}  
Línea 43: Línea 42:
units of velocity) are translated into energy density and flow multiplying  
units of velocity) are translated into energy density and flow multiplying  
by $\sigma =\rho v^2$, where $\rho $ is the mass per unit length.
by $\sigma =\rho v^2$, where $\rho $ is the mass per unit length.
\begin{equation}
 
\label{eq2}
<math>e=\textstyle{1 \over 2}\rho v^2\left[ {\left( {\frac{\partial \psi  
e=\textstyle{1 \over 2}\rho v^2\left[ {\left( {\frac{\partial \psi  
}{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right]</math>
}{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right]
 
\end{equation}
 
\begin{equation}
<math>S=\rho v^2\dot {\psi }\frac{\partial \psi }{\partial z}</math>
\label{eq3}
 
S=\rho v^2\dot {\psi }\frac{\partial \psi }{\partial z}
\end{equation}
the wave function may be real or complex. If it is complex, the energy and  
the wave function may be real or complex. If it is complex, the energy and  
flow are also complex.
flow are also complex.

Revisión del 14:52 10 sep 2007

\section{Energy of a wave according to Borowitz} \subsection{Energy and flow of real wave equation in one dimension\footnote{ S. Borowitz, Fundamentals of Quantum Mechanics, W.A. Benjamin, NY (1967), pp.71-74}}

multiply by , then . Notice that and so that their difference yields ; whereas the second time derivative may be written as , so that the equation is:

grouping temporal and spatial derivatives, we obtain a continuity type equation:

and thus a density and flux may be defined as ${e}'=\textstyle{1 \over 2}\left[ {\left( {\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right]$, ${S}'=\dot {\psi }\frac{\partial \psi }{\partial z}$. The dimensionless density or flow (with units of velocity) are translated into energy density and flow multiplying by $\sigma =\rho v^2$, where $\rho $ is the mass per unit length.


the wave function may be real or complex. If it is complex, the energy and flow are also complex.

\section{Energy of a wave according to Borowitz} \subsection{Energy and flow of real wave equation in one dimension\footnote{ S. Borowitz, Fundamentals of Quantum Mechanics, W.A. Benjamin, NY (1967), pp.71-74}} \[</span> <span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> ^2</span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> }{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> z^2}-</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{1}{v^2}</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> ^2</span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> </span> <span style="color: #00a000;">}{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> t^2}=0</span> <span style="color: #00a000;">\] multiply by $\frac{\partial \psi }{\partial t}=\dot {\psi }$, then $\dot {\psi }\left( {\frac{\partial ^2\psi }{\partial z^2}-\frac{1}{v^2}\frac{\partial \dot {\psi }}{\partial t}} \right)=0$. Notice that $\frac{\partial }{\partial t}\left( {\frac{\partial \psi }{\partial z}} \right)^2=2\frac{\partial \psi }{\partial z}\frac{\partial \dot {\psi }}{\partial z}$ and $\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi }{\partial z}} \right)=\dot {\psi }\frac{\partial ^2\psi }{\partial z^2}+\frac{\partial \psi }{\partial z}\frac{\partial \dot {\psi }}{\partial z}$ so that their difference yields $\textstyle{1 \over 2}\frac{\partial }{\partial t}\left( {\frac{\partial \psi }{\partial z}} \right)^2-\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi }{\partial z}} \right)=-\dot {\psi }\frac{\partial ^2\psi }{\partial z^2}$; whereas the second time derivative may be written as $\dot {\psi }\frac{\partial \dot {\psi }}{\partial t}=\textstyle{1 \over 2}\frac{\partial \dot {\psi }^2}{\partial t}$, so that the equation is: \[</span> <span style="color: #606000;">\textstyle</span><span style="color: #00a000;">{1 </span><span style="color: #606000;">\over</span><span style="color: #00a000;"> 2}</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> }{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> t}</span><span style="color: #606000;">\left</span><span style="color: #00a000;">( {</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> </span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> </span> <span style="color: #00a000;">}{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> z}} </span><span style="color: #606000;">\right</span><span style="color: #00a000;">)^2-</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> }{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> z}</span><span style="color: #606000;">\left</span><span style="color: #00a000;">( {</span><span style="color: #606000;">\dot</span><span style="color: #00a000;"> {</span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> </span> <span style="color: #00a000;">}</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> </span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> }{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> z}} </span><span style="color: #606000;">\right</span><span style="color: #00a000;">)+</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{1}{v^2}</span><span style="color: #606000;">\textstyle</span><span style="color: #00a000;">{1 </span><span style="color: #606000;">\over</span><span style="color: #00a000;"> </span> <span style="color: #00a000;">2}</span><span style="color: #606000;">\frac</span><span style="color: #00a000;">{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> </span><span style="color: #606000;">\dot</span><span style="color: #00a000;"> {</span><span style="color: #606000;">\psi</span><span style="color: #00a000;"> }^2}{</span><span style="color: #606000;">\partial</span><span style="color: #00a000;"> t}=0</span> <span style="color: #00a000;">\] grouping temporal and spatial derivatives, we obtain a continuity type equation: \begin{equation} \label{eq1} \frac{\partial }{\partial t}\textstyle{1 \over 2}\left[ {\left( {\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right]-\frac{\partial }{\partial z}\left( {\dot {\psi }\frac{\partial \psi }{\partial z}} \right)=0 \end{equation} and thus a density and flux may be defined as ${e}'=\textstyle{1 \over 2}\left[ {\left( {\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right]$, ${S}'=\dot {\psi }\frac{\partial \psi }{\partial z}$. The dimensionless density or flow (with units of velocity) are translated into energy density and flow multiplying by $\sigma =\rho v^2$, where $\rho $ is the mass per unit length. \begin{equation} \label{eq2} e=\textstyle{1 \over 2}\rho v^2\left[ {\left( {\frac{\partial \psi }{\partial z}} \right)^2+\frac{1}{v^2}\dot {\psi }^2} \right] \end{equation} \begin{equation} \label{eq3} S=\rho v^2\dot {\psi }\frac{\partial \psi }{\partial z} \end{equation} the wave function may be real or complex. If it is complex, the energy and flow are also complex.

categoría:ondas