Compleja:Demostracion del Teorema de Cauchy en un disco

De luz-wiki

Si $f:B(a;R)\rightarrow C$ es holomorfa entonces $f$ tiene una primitiva $F$ en $B(a;R)$. Consecuentemente si $\gamma $ es cualquier curva cerrada rectificaba en $B(a;R)$ entonces:

$\int _{ \gamma }^{ }{ f } =0$

Demostración:

Si $f$ tiene una serie de Taylor en $B(a;R)$.

$f(z)=\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ (z-a) }^{ n } } $

.

Para $z\in B(a;R)$ definamos entonces:

$F(z)=\sum _{ n=0 }^{ \infty }{ \frac { { a }_{ n } }{ n+1 } { (z-a) }^{ n+1 } } =(z-a)\sum _{ n=0 }^{ \infty }{ \frac { { a }_{ n } }{ n+1 } { (z-a) }^{ n } } $

.

y observe, que como $\lim _{ }{ \left\{ { (n+1) }^{ \frac { 1 }{ n } } \right\} } =0$ se sigue que la ultima serie tiene el mismo disco de convergencia $B(a;R)$.

Por lo que se sigue que ${ F }^{ ´ }(z)=f(z)$ para todo $z\in B(a;R)$.


Miguel Medina Armendariz (discusión) 15:46 5 jul 2015 (CDT)


Carlosmiranda (discusión) 15:11 21 nov 2020 (CST)