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Abstract The kinetic and potential energy of a vibrating string is considered in the

�rst order approximation of purely transverse small amplitude linear oscillations. The

energy continuity equation is obtained for an energy density having a potential that

depends on second order spatial derivatives of the perturbation. The concomitant �ow

involves two terms −∂tψ∂zψ and ψ∂z∂tψ that will be shown to correspond to the ki-

netic and potential energy �ows respectively. The string's transverse force is consistent

with its derivation from minus the gradient of this potential. In contrast, the widely

accepted potential energy of a string depends on the perturbation's �rst order deriva-

tive squared. However, this expression does not yield the appropriate force required

to satisfy a wave equation. The potential energy controversy is thus resolved in favour

of the %pot = −1
2Tψ∂

2
zψ potential function. Contrary to what is usually recognized,

the potential energy spatial distribution is shown to be uniquely determined. These

results have far reaching consequences pertaining the wave energy distribution in other

mechanical systems.

Keywords Energy transport · Continuity equations · Potential energy localization

1 Introduction

The rather complex problem of vibrations in a taut string [1] can be cast in its sim-

plest form, considering only small transverse vibrations with constant tension. These

approximations, upheld throughout this text, are the starting point in order to estab-

lish the main features of the physical phenomenon. This system is often presented in

the introductory chapter to transverse wave phenomena in continuous media [2].

Contrary to what would be expected, there is still considerable controversy regard-

ing the energy density and �ow in this elementary problem [3]. This issue can be traced
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back to a venerable reference [4], where �the energy of only a portion of a string� is

stated not to be unique. Nonetheless, it was also stressed from the outset, that the en-

ergy density integrated over the complete string must be unique. The quadratic form of

a �rst order derivative for the potential energy has been preferred to the form involving

a second order derivative [5]. In [4], the �rst order spatial derivative expression was

chosen due to its simpler mathematical expression. However, it was later supported by

a formal derivation of a continuity equation [6]. Whether the starting point, in order

to describe the energy of a system, is an integral or a di�erential form, depends on

the system and the information required. If the energy distribution is required, the

di�erential form is essential, whereas if the energy evolution of the whole system is

required, the integral form is more appropriate, in particular if discontinuities such as

shock waves are present [7]. For these and other reasons that will be considered later,

the square of the �rst order derivative has prevailed as the quantity representing the

potential energy of this system [2]. Nonetheless, it has also been argued, in particular

regarding counter-propagating waves, that the form involving second order derivatives

provides a better description of the potential energy spatial distribution within a mode

[8]. The potential energy density ambiguity has triggered the more ample discussion

of where the potential energy resides [9]. The energy in mechanical wave phenomena

is of great importance for extracting energy for human oriented purposes. The energy

distribution in space and time is essential to develop highly e�cient conversion devices.

For example, in order to obtain energy from ocean waves or energy from vibrations

generated in mechanical devices by wind energy.

In this manuscript, a continuity equation is obtained from the wave equation in

section 2. This rigorous derivation, puts the potential energy density involving second

order derivatives, hereafter labeled by %pot, on an equal footing to the �rst order

derivative expression. In subsection 2.3, the in�nite set of conservation equations that

can be derived from the wave equation is addressed. Whether there is a way to choose

a continuity equation from this set, to unequivocally represent energy conservation,

will be treated in section 3. The force will be derived from the proposed potential

functions in subsections 3.1 and 3.2. From these results it will be shown in the last

section that %pot represents the potential energy of the system. In appendix A, the

well known traveling harmonic, counter-propagating and waves superposition cases

will be revisited in the light of the new results and contrasted with the �rst order

derivative expressions.

2 Complementary �elds conservation equation

The wave equation for a perturbation ψ in 1 + 1 dimensions, one temporal labeled t
and one spatial, labeled z, is

∂2zψ −
1

v2
∂2t ψ = 0, (1)

where v is the perturbation's velocity of propagation, and ∂2z , ∂
2
t represent second

partial derivatives with respect to the z spatial propagation direction and time respec-

tively. For a string, the perturbation ψ is transverse and is actually the position of

the string in an orthogonal direction, say the y direction. This di�erential equation

is obtained from Newton's relationship, equating the acceleration to the force exerted

on the two ends of an in�nitesimal string segment. The force on various segments at

di�erent positions of the string are illustrated in �gure 1. The transverse force Fy, at
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Fig. 1 Forces exerted on in�nitesimal segments of the oscillating string. Leftmost segment is
an arbitrary point between the trough and the equilibrium position; middle segment is located
at the in�ection point; right hand segment at the wave crest. The net force is proportional to
the curvature of the string.

each end is equal to the tension force T , assumed to be constant, times the projection

in the transverse direction. For small amplitudes, sin ≈ tan = ∂zψ, the projection is

equal to the string's slope. The transverse force linear density on a segment is,

Fy (segment) = lim
∆z→0

1

∆z

(
T (∂zψ)z+∆z − T (∂zψ)z

)
= T∂2zψ. (2)

As pertinently asserted �The tension therefore provides a net transverse force on the

segment only when the string is curved� [2, p.142]. To state it formally, the curvature

of a function ψ is κ = ∂2zψ
(
1 + (∂zψ)

2
)− 3

2
. Therefore, the force on a segment is pro-

portional to the curvature if the slope is small. The displacement ψ in the y direction,

then satis�es the wave equation

µ∂2t ψ = T∂2zψ, (3)

where µ is the mass linear density. From comparison with Eq. (1), the velocity of

propagation is v =
√
T
µ . If the solution is written in amplitude and phase variables,

ψ = A cos (kz − ωt), the velocity also obeys the relationship v = ω
k , where ω is the

angular frequency and k is the wavevector magnitude. Let us insist on what is evident,

the second spatial derivative is essential to obtain a wave equation, for a �rst order

derivative force would produce a parabolic equation.

The complementary �elds scheme allows us to obtain a continuity equation from two

linearly independent solutions to the scalar wave equation [10]. In the one dimensional

case, the conserved quantity becomes an exact invariant [11]. The complementary �elds

procedure can be generalized to any two equations from a set of second order ordinary

di�erential equations (ODE's). This scheme has been successfully applied to obtain

the energy content of a time dependent harmonic oscillator subjected to a spatially

linear but arbitrary time dependent restoring force [12]. The complementary �elds

formalism has also been used to obtain continuity equations from vector second order

linear partial di�erential equations (PDE's). In this way, the helicity gauge independent

continuity equation of electromagnetic �elds was recently derived [13]. From a physical



4

point of view, the �elds are complementary because the energy content of the system

is dynamically exchanged between the two �elds involved.

Evaluate the time derivative of wave equation (1),

∂2z ψ̇ −
1

v2
∂2t ψ̇ = 0, (4)

where ψ̇ = ∂tψ. Take the product of the velocity function ψ̇ times the wave equation

(1),

ψ̇∂2zψ −
1

v2
ψ̇∂2t ψ = 0. (5)

Evaluate the product of the perturbation function ψ times the derivative of wave

equation (4),

ψ∂2z ψ̇ −
1

v2
ψ∂2t ψ̇ = 0.

The di�erence between these two PDE's is(
ψ∂2z ψ̇ − ψ̇∂2zψ

)
− 1

v2

(
ψ∂2t ψ̇ − ψ̇∂2t ψ

)
= 0.

The two terms in parenthesis can be written in terms of partial derivatives to obtain a

continuity equation

∂z (ψ∂z∂tψ − ∂tψ∂zψ) +
1

v2
∂t
(
(∂tψ)

2 − ψ∂2t ψ
)
= 0,

where ψ̇ has been explicitly written as ∂tψ. In this 1+1 dimensional case, the divergence

operator is simply the partial derivative with respect to z. Invoke the wave equation to

rewrite the term involving the second time derivative in terms of the spatial derivative

∂z (ψ∂z∂tψ − ∂tψ∂zψ) +
1

v2
∂t
(
(∂tψ)

2 − v2ψ∂2zψ
)
= 0.

Multiply the equation by the tension T and substitute v2 = T
µ , to obtain the string

continuity equation

∂z

[
1

2
T (ψ∂z∂tψ − ∂tψ∂zψ)

]
+ ∂t

[
1

2

(
µ (∂tψ)

2 − Tψ∂2zψ
)]

= 0 (6)

There is then an assessed quantity,

% =
1

2
µ (∂tψ)

2︸ ︷︷ ︸
kinetic energy

+ −1

2
Tψ∂2zψ︸ ︷︷ ︸,

potential energy

(7a)

where the di�erential equation (6) has been multiplied by 1
2 to comply with the usual

de�nition of kinetic energy density,

%kin =
1

2
µ (∂tψ)

2 . (7b)

The remaining term in the assessed density must then be a potential energy

%pot = −
1

2
Tψ∂2zψ. (7c)
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At this stage, this assertion can be considered as a working hypothesis. The quantity

% is then the total energy density of the string. The corresponding �ow is

Φ% =
1

2
T (ψ∂z∂tψ − ∂tψ∂zψ) . (8)

The potential energy density (7c) has been obtained before using a force times distance

argument of an in�nitesimal string segment evaluated for a continuous quasi-static

transition of the string [4,8, p.126]. However, only recently a continuity equation of the

form (6) has been stated [9]. In order to elucidate the contributions to the �ow, write

the wave velocity in the restricted case of a positive direction traveling wave v = − ∂tψ
∂zψ

.

The �ow should be equal to the product of the energy density times the velocity

% v = (%kinv + %potv) =
1

2

(
µ (∂tψ)

2 v − Tψ∂2zψ v
)
.

From the wave velocity, ∂tψ = −v∂zψ = −
√
T
µ ∂zψ, substitute its square in the �rst

term. From the spatial derivative of this expression ∂z∂tψ = −v∂2zψ, this result is

substituted in the second term to obtain

(%kinv + %potv) =
1

2
(−T∂zψ∂tψ + Tψ∂z∂tψ) ,

that is identical to the �ow (8) obtained from the complementary �elds procedure.

From this latter derivation, we identify the kinetic energy �ow as

Φ%kin = %kinv = −1

2
T∂zψ∂tψ, (9a)

whereas the potential energy �ow is

Φ%pot = %potv =
1

2
Tψ∂z∂tψ. (9b)

2.1 Energy density with �rst order derivative

In contrast, the usual �rst order derivative expression uses only Eq. (5) and invokes

the identity ∂tψ∂
2
zψ = ∂z (∂tψ∂zψ) − 1

2∂t (∂zψ)
2 to obtain the continuity equation

[14],

∂z (−T∂tψ∂zψ) + ∂t
1

2

(
µ (∂tψ)

2
+ T (∂zψ)

2
)
= 0. (10)

The assessed density and �ow are then

E1 = 1
2µ (∂tψ)

2︸ ︷︷ ︸
kinetic energy Ekin1

+ 1
2T (∂zψ)

2︸ ︷︷ ︸
potential energy V1

, P1 = −T∂zψ∂tψ︸ ︷︷ ︸
power

, (11)

the subindex 1 is used throughout this text to emphasize that these expressions corre-

spond to the �rst order derivative expression. These energy and �ow expressions have

also been obtained by other methods [15], making this proposal more robust.
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2.2 Comparison of the two approaches

The kinetic energy density is the same in both schemes. However, the potential en-

ergy density involves a second order derivative in the complementary �elds derivation

whereas in the usual expression it is proportional to the square of the �rst spatial

derivative. The �ow had been considered to be equal in previous proposals. However,

the present derivation imposes a new expression for the �ow, where the usual form only

accounts for half the usual �ow, the remaining term 1
2Tψ∂z∂tψ being entirely new.

The strongest argument to dismiss %pot from a mathematical point of view, has

been that it does not satisfy the energy transport equation [16, Eq.(7)],

∂

∂z
(−T∂tψ∂zψ) + ∂t

1

2

(
µ (∂tψ)

2 − Tψ∂2zψ
)
6= 0.

Indeed, at the time this criticism was written, there was no suggestion that the �ow had

to be modi�ed accordingly, leading to the �ow de�nition given by (8). Therefore, with

the appropriate �ow expression, the energy transport equation (6), is indeed ful�lled.

It has been stated that the potential energy %pot is only valid for calculation of the

potential energy of the entire string [16,3]. The present derivation makes it clear that

this is not the case. The di�erential form insures that there is local as well as global

conservation1. The energy densities and its �ow can be evaluated over an arbitrary

segment, be it a sub-wavelength segment (so long as the medium can be considered

continuous) or the entire string. In this sense, it stands on an equal footing to the

�rst order spatial derivative expression. Both procedures are equally sound and both

possess di�erential forms. The assertion that %pot is only globally valid, has its origin

in the way the two potential terms have been related [4]. If the %pot potential energy
is integrated over the entire string and integration by parts is performed,∫ b

a
%pot dz = −

∫ b

a

1

2
Tψ∂2zψ dz =

1

2
T

∫ b

a
(∂zψ)

2 dz − 1

2
T ψ∂zψ|ba .

(A factor of 1
2 due to a βdβ integration from 0 to 1 is not needed here [4]). From this

equation, a relationship between the integral of the two potential energies %pot and V1
is obtained ∫ b

a
%pot dz =

∫ b

a
V1dz −

1

2
T ψ∂zψ|ba . (12)

The spatial integrals of the two potential terms %pot and V1 are then equal provided

that the boundary terms add up to zero. According to [4, p.127], if the limits are the

ends of the string, whenever there is no energy transferred to the supports, either rigid

or freely supported, the boundary term −1
2T ψ∂zψ|ba is zero. If the string is terminated

by a damper or another string with characteristic impedance di�erent from the string,

energy will be transmitted (and re�ected) at the interface [2, p.151]. This state of a�airs

has laid an unduly importance to this boundary term. This argument has also been

used to state that the potential energy function is not unique, i.e. %pot or V1 are both

admissible, but the energy of the whole, spatially integrated system, is indeed unique

[4].

1 Recall that local conservation implies global conservation but the implication does not
hold the other way around.
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2.3 In�nite set of continuity equations

It has been known for some time that free �elds and in particular electromagnetic �elds,

possess an in�nite set of continuity equations [17,18]. The densities are represented by

local bilinear functions, the zilch tensors [19,20] were early examples of these types of

continuity equations. Our previous derivation allows for a straightforward demonstra-

tion of the existence of this in�nite set. The complementary �elds procedure requires

two second order linear PDE's, let the complementary pair be

∂2zξ − v−2∂2t ξ = 0 and ∂2zχ− v−2∂2t χ = 0.

Evaluating the nth order derivative of ∂2zψ − v−2∂2t ψ = 0, the equation for ξ = ∂nt ψ
is obtained and the mth order derivative gives χ = ∂mt ψ. The continuity equation will

be non trivial provided that the solutions ξ and χ are linearly independent functions.

It is always possible to construct such independent solutions, for example, from the

Wronskian of the system. The continuity equation, following our previous construction

but with these two equations as the starting point is

∂z (ξ∂zχ− χ∂zξ) + v−2∂t (χ∂tξ − ξ∂tχ) = 0,

where the bilinear density is %mn = χ∂tξ−ξ∂tχ and its corresponding �ow is Φ%mn =

ξ∂zχ−χ∂zξ. The subindices stand for the nth andmth order derivative of the original

di�erential equation, ∂2zψ−v−2∂2t ψ = 0. Clearly an in�nite set of continuity equations

of this form can be obtained. An analogous procedure could in fact be also applied to

the algorithm leading to the �rst order derivative expression.

3 Internal consistency

The question then arises as to how to choose the appropriate continuity equation to

represent energy conservation. Since the kinetic energy involves a quadratic �rst order

time derivative and the total energy density must include a kinetic energy term, the

possibilities are greatly narrowed. However, the complementary �elds equation (6) as

well as the continuity equation (10), exhibit such a term. However, their potential

energy term is di�erent and this is where the controversy comes in.

The starting point in order to establish a wave equation for the transverse dis-

placement, was to equate the transverse force on a segment with the mass acceleration

product. From the wave equation, a conservation equation is obtained that involves

both, the kinetic and the potential energy. From these quantities, the acceleration and

the force may be obtained. In particular, the force evaluated from minus the gradient

of the potential should be equal to the force proposed in the �rst place in order to

obtain the wave equation. The sequence of this theoretical framework is depicted in

�gure 2. This procedure, as we shall see, singles out one of the continuity equations

from the in�nite set.

3.1 Force derived from %pot potential.

The force in a conservative system is given by F = −∇V , where V is a scalar potential

function. When this function depends explicitly on position and time, the total energy
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Fig. 2 Internal consistency scheme: A continuity equation is obtained from the in�nite set of
possibilities. The potential energy derived thereof has to be consistent with the force used in
the �rst place to derive the wave equation.

of the system is not conserved [21, p.5]. The wave equation was established for the

transverse string oscillation ψ. The longitudinal displacement of the segments has been

neglected in this simple model. The relevance of the longitudinal coupling in more

realistic models has been addressed by di�erent authors [1,22,9]. Here, the problem is

restricted solely to the gradient in the y transverse direction, Fy = − (∇V )y = −∂yV .

The transverse force component derived from the %pot function is

Fy (%pot) = − (∇V )y =
1

2
∂y
(
Tψ∂2zψ

)
. (13)

The force required for a taut string to satisfy a wave equation was obtained from the

net force on a string in�nitesimal segment (2). These two forces must be the same in

order to have a consistent scheme, Fy (segment) = Fy (%pot),

T∂2zψ =
1

2
∂y
(
Tψ∂2zψ

)
. (14)

This equation is satis�ed if ∂2zψ = c1ψ, where c1 is constant, since 1
2∂y

(
Tψ∂2zψ

)
=

1
2Tc1∂y

(
ψ2
)
= Tc1ψ. Notice that if the derivative of the product on the right hand
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side is expanded

T∂2zψ =
1

2
∂y
(
Tψ∂2zψ

)
=

1

2

(
T∂yψ ∂

2
zψ
)
+

1

2

(
Tψ∂y∂

2
zψ
)
,

the term 1
2

(
T∂yψ ∂

2
zψ
)
= 1

2

(
T ∂2zψ

)
cancels out half of the term on the left, since

the perturbation ψ for the string is the displacement in the y direction, ∂yψ = 1. The

rightmost term, again provided that ∂2zψ = c1ψ, cancels the remaining part

T∂2zψ = Tψ∂y∂
2
zψ = Tψ∂y (c1ψ) = Tψc1.

For a force satisfying Hooke's linear relationship, µ∂2t ψ = −µω2ψ. The string wave

equation (3) then becomes,

∂2zψ = −µω
2

T
ψ = −k2ψ. (15)

Notice that this result is true for the dynamic condition, i.e. ∂2t ψ 6= 0. The constant

c1 is then equal to −k2. The transverse force in the y direction is therefore

Fy (%pot) = − (∇%pot)y =
1

2
T∂2zψ +

1

2
T∂2zψ = T∂2zψ = −Tk2ψ.

This force, proportional to the second spatial derivative of the perturbation, is identical

to (2), thereby producing a coherent schema. This result makes decisive use of the

harmonic condition. An arbitrary well behaved wave function can be expressed as a

sum of harmonic functions via Fourier decomposition. If the oscillating function is not

harmonic, the internal consistency scheme can nonetheless be evaluated and ful�lled for

each harmonic component. This procedure is illustrated with a two waves interference

setup in appendix A.3.

Notice that the present derivation does not involve quasi-static con�gurations in any

way, where the potential energy contribution is separated from the kinetic contribution.

Thus, the criticism [16] to the quasi-static approach [4,23] is not applicable here.

3.2 Force derived from potential with �rst order derivative

Evaluate the force from the potential proposed in (11),

Fy (V1) = − (∇V1)y = −∂y
(1
2
T (∂zψ)

2
)
.

Consider a harmonic wave ψ = a cos(kz − ωt), so that (∂zψ)
2 = k2

(
1− ψ2

)
,

Fy (V1) = −
1

2
Tk2∂y

(
1− ψ2

)
= Tk2ψ. (16)

This force, although linear in ψ as expected, has the opposite sense of the required

restitutive force, Fy = µ∂2t ψ = −µω2ψ. Therefore, a consistent scheme is not attained

with the quadratic potential. Nonetheless, the quantity E1 = Ekin1 +V1 = 1
2µ (∂tψ)

2 +
1
2T (∂zψ)

2 is a perfectly sound locally conserved quantity. The continuity equation

that it satis�es with its corresponding �ow P1 = −T∂zψ∂tψ, is certainly correct.

What remains to be elucidated, is the physical meaning of these quantities. In the

Lagrangian formalism, V1 is recognized as a generalized velocity dependent potential.
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4 Discussion and Conclusions

The continuity equation involving a second order spatial derivative for the potential

energy has been derived with the complementary �elds formalism. The two terms

comprising the �ow Φ% in this scheme, have been shown to represent the kinetic and

potential energy �ows. The internal consistency of the force evaluated from the new

derived potential density %pot = −1
2Tψ∂

2
zψ, and the force used to obtain the wave

equation, has been proved.

The scalar quantities % and Eq satisfy a continuity equation in 1 + 1 dimensions,

namely (6) and (10) respectively. They are both de�ned in terms of a perturbation ψ
that satis�es the 1 + 1 dimensional dispersion-less wave equation. The wave equation

for the transverse motion of a string is obtained from Newton's Fy = µ∂2t ψ equation,

where the force Fy is equal to T∂2zψ. This expression, in turn, is obtained from the

sum of transverse forces exerted at the two ends of an in�nitesimal string segment.

The di�erential form of the conservation equations insures that % and E1 are locally

conserved quantities. Their corresponding �ow Φ1 or P1 represents the transport of

the assessed density % or E1 respectively.

The kinetic energy term is identical in % and E1. However, the remaining energy

term, %pot or V1 di�ers in the two continuity equations. The working hypothesis has

been that this remaining term represents the potential energy of the system. It is well

known that the spatial integration of these two 'potential energies' di�er by a term

evaluated at the boundary.

Since the force is de�ned as minus the gradient of the potential energy Fy = −∂yV ,

the crucial test is then whether %pot and/or Vq satisfy this relationship. We have shown

that %pot satis�es the Fy = T∂2zψ = −∂y%pot equation, therefore, up to an integration

constant, %pot represents the potential energy of the system. In contrast, −∂yVq 6= Fy,
thus, it cannot represent the potential energy of the system contrary to what has been

assumed for so many years.

The possibility of %pot = −1
2Tψ∂

2
zψ representing the potential energy has been

refuted on several grounds. Two of them have been favourably resolved here, namely

an adequate continuity equation involving %pot and the dismissal of the quasi-static

condition. However, it remains to be seen whether other criticisms, in particular the

potential energy distribution in speci�c cases, are surmountable or not. Some particular

con�gurations are undertaken in the appendix. A notable asset, shown in App. A.1.1, is

that the energy of a harmonic oscillator is obtained when the string's harmonic motion

is evaluated at constant z. More re�ned approximations within the present scheme

are certainly desirable. For example, the inclusion of longitudinal motion and possibly

dissipation. However, this account has been deliberately kept as simple as possible in

order highlight the essential features of the problem.

It has been suggested that the potential energy of only a portion of the string is not

uniquely determined [4]. However, for given initial conditions in the sense of the Cauchy

problem [24], ψ is uniquely determined by the wave equation and then, the linear partial

di�erential equation Fy = −∂yV (ψ) has a unique solution up to integration constants.

Therefore, there cannot be any ambiguity in the potential energy distribution within

the string. This conclusion has also been recently reached following di�erent arguments

by other authors [3,25].

Regarding other mechanical systems, the potential energy of water waves, in par-

ticular ocean waves, is usually evaluated with a quasi-static approach excluding the

particle path or its velocity [26]. Although some alternatives have been proposed, the
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static potential energy calculation still prevails [27, Sec.4.4.1]. The hydrodynamic equa-

tions for deep water gravity waves can be linearized assuming an incompressible non

viscous �uid. The present formalism is then a good candidate to evaluate the potential

energy distribution in ocean waves. Although average values for the kinetic and poten-

tial energies are often used, the detailed time and space resolved dynamics could have

an impact on the design of e�cient energy conversion devices.

The corresponding author states that there is no con�ict of interest.

A Appendix: Examples of wave pro�les

Several arguments that have been put forward in order to choose one potential or the other,
are physical arguments that are better illustrated for speci�c wave pro�les and boundary
conditions.

A.1 Traveling harmonic wave

Consider a simple harmonic traveling wave in the real representation ψ = a cos (kz − ωt). The
kinetic energy density is

%kin =
1

2
µ (∂tψ)2 =

1

2
µa2ω2 sin2 (kz − ωt) (17a)

and the potential energy density is

%pot = −
1

2
Tψ∂2zψ =

1

2
µa2v2k2 cos2(kz − ωt). (17b)

These energies are depicted in a colour density plot as a function of position in �gure 3. The
total energy density is

% =
1

2
µa2

(
ω2 sin2 (kz − ωt) + v2k2 cos2(kz − ωt)

)
=

1

2
µa2ω2. (17c)

Kinetic and potential energy are π
2
out of phase, their sum is constant both in time and space.

In particular, at the crests and troughs, where the curvature is maximum, the potential energy
is maximum while the kinetic energy is zero. At the in�ection points, the potential energy
is zero (although the curve slope is �nite) while the kinetic energy is maximum. In contrast,
in the �rst order spatial derivative expression both terms are in phase; this outcome is most
peculiar at the curve extrema (∂zψ = 0), where kinetic and potential energies are both zero.
The energy �ow in the present description is

Φ% =
1

2
T (ψ∂z∂tψ − ∂tψ∂zψ) =

1

2
µa2ω2v. (18)

The �ow is also time and space independent, even though no averages have been performed.
These results are a hallmark of the complementary �elds approach, whereby the assessed
quantity, in this case energy itself, is �owing to and fro between two forms of energy. In the
electromagnetic realm, the helicity or the chirality of the �elds have been shown to behave in
an analogous fashion [28].

A.1.1 Comparison with harmonic oscillator

The non propagating problem of a harmonic oscillator should be obtained from the string's
harmonic oscillation when evaluated for constant zi. From the string wave equation (3) and
the harmonic condition for the spatial dependence (15),

µ∂2t ψ = T∂2zψ = −µω2ψ ⇒ ∂2t ψ (t, zi) + ω2ψ (t, zi) = 0, (19)
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Fig. 3 Traveling harmonic wave. The potential energy %pot = − 1
2
Tψ∂2zψ is maximum at the

crests and troughs, whereas the transverse velocity vy = ∂yψ, and hence the kinetic energy
is zero at these points. As the string crosses the equilibrium position (in�ection points), the
potential energy is zero and the kinetic energy is maximum. Notice the consistency with the
forces exerted on the string segments, as depicted in �gure 1.

where the latter is the archetypal harmonic oscillator equation. Physically, each point (segment)
in the string executes harmonic motion for an arbitrary �xed zi. It is well established that
the kinetic and potential energies for the harmonic oscillator are π

2
out of phase. In a mass

spring system, the kinetic energy is maximum when the mass passes through the equilibrium
position (zero potential energy) and null for maximum displacement when the potential energy
in the string is maximum (either compression or elongation). The energy of the system is the
same for all times. The string potential energy for a harmonic wave (17b) can be written as

%pot = − 1
2
Tψ∂2zψ = − 1

2
Tψ

(
−µω

2

T
ψ
)

= 1
2
µω2ψ2. The total energy of the system %, then

becomes a sum of squares

% =
1

2
µ (∂tψ)2 +

1

2
µω2ψ2,

that is identical to the kinetic and potential energy terms of the harmonic oscillator. It is then
clear that no averaging is required to obtain a time independent energy since the kinetic and
potential contributions are out of phase. The choice of di�erent zi's merely adds a constant
phase shift for the oscillating segment at one z position to another in a di�erent position.

In contrast, notice that for constant zi, the energy obtained with the �rst order spatial
derivative expression E1 = 1

2
µ (∂tψ)2 + 1

2
T (∂zψ)2 does not yield the harmonic oscillator

energy but time dependent kinetic and potential in phase terms. It is only the average of the
quadratic form 〈E1〉 = 1

2
µω2a2 and its corresponding average �ow 〈P1〉 = 1

2
µω2a2v, that

reproduce results equivalent to % and Φ% given by (17c) and (18).

A.2 Counter-propagating waves with equal amplitude and frequency

It can be misleading, from our point of view, to use the word 'standing' for waves propagating in
opposite directions because waves are never stationary. Names are sometimes at the inception
of misconceptions. If counter propagating waves have equal amplitudes, the net �ow is zero,
but there is certainly �ow from each of both waves. An altogether di�erent but illustrating
analogue common in our crammed cities are intra-city motorways, where two very di�erent
scenarios have zero net �ow: i) A tra�c jam involving all vehicles so that every car is standing
and there is zero net �ow; In contrast, ii) a fast and steady equal �ow of cars in both senses,
where the net �ow is again zero. Counter propagating waves are akin to the latter situation
where we would hardly speak of anything 'standing'. It is sometimes mentioned that the name
comes from the spatially stationary nodes. An unfair coining, for these are the only stationary
points in the 2π interval, while all the rest are wiggling up and down. Leaving aside this
digression, consider two counter propagating but otherwise equal waves represented by

ψ (z, t) = a sin (kz) sin (ωt) . (20)

The kinetic energy density is

%kin =
1

2
µa2ω2 sin2 (kz) cos2 (ωt) (21a)



13

Fig. 4 Counterpropagating harmonic waves. Spatial distribution of the string displacement ψ,
kinetic %kin and potential %pot energies at various times (in di�erent shades of colour). When
%kin is large (light shade), %pot is small (light shade) and vice versa for dark shading. The total
energy % (dotted red) is spatially modulated but constant in time.

and the potential energy density is

%pot =
1

2
µa2v2k2 sin2 (kz) sin2 (ωt) . (21b)

The total energy density is

% =
1

2
µa2ω2 sin2 (kz) . (21c)

The energy density is time independent, goes to zero at z = 0 and kz = π, mod π. The kinetic
energy is zero at the nodes, and in particular, at the end points. However, in sharp di�erence
with the �rst order derivative expression, the potential energy is also zero at the nodes or
the end points. The nodes correspond to in�ection points were the second spatial derivative
vanishes. In particular, there is no curvature at the end points. Every in�nitesimal segment
in the string executes harmonic transverse motion in the time domain. The amplitude of a
given segment increases as it lies further apart from a node. The energy maxima are located
at kz = π

2
, mod π. At these points the amplitude is largest. At maximum displacement

kz = π
2
, ωt = π

2
, the kinetic energy is zero but the potential energy is maximum. The energy

�ow vanishes everywhere

Φ% =
T

8
a2 (sin (2kz) sin (2ωt)ωk − ω sin (2kz) k sin (2ωt)) = 0. (22)

There is no net �ow of energy either locally nor globally, even in the sub-wavelength scale. The
net �ow is time independent and equal to zero for an arbitrary segment of the string. The time
independence of the energy density % either for running (17c) or counter-propagating (21c)
waves, is in accordance with a conservative force mechanical system, where the sum of kinetic
and potential energy should be time independent.

In contrast, the energy density involving the �rst order spatial derivative for counter
propagating waves is E1 = 1

2
µa2ω2

(
sin2 (kz) cos2 (ωt) + cos2 (kz) sin2 (ωt)

)
and the power

is P1 = − 1
4
µa2ω2v sin (2kz) sin (2ωt). In the sub-wavelength scale there is energy redistribu-

tion and �ow [14]. However, the �ow is zero at the nodes and antinodes [5]. The integrated
�ows Φ% and P1 are equal if the end points lie at the nodes. However, if an endpoint say b,
is freely supported, the boundary term does not vanish and is equal to − 1

2
Tψ (b) ∂zψ|b =

− 1
4
Ta2k sin (2kb) sin2 (ωt).

A.3 Superposition

Consider the presence of waves with di�erent frequencies. Two or more waves will exhibit
the universal phenomenon of interference. In fact, counter propagating waves interfere, but
it is not so evident due to the frequency degeneracy in the co-linear con�guration imposed
by the single spatial dimension. Superposition of two waves with non degenerate frequency is
evaluated here. The generalization to an arbitrary number of waves is straightforward. Consider
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two harmonic traveling waves with di�erent frequencies in the real algebra representation
ψ = a1 cos (k1z − ω1t) + a2 cos (k2z − ω2t). The kinetic energy density is

%kin =
1

2
µ (∂tψ)2 =

1

2
µ
(
a21 ω

2
1 sin2 (k1z − ω1t) + a22 ω

2
2 sin2 (k2z − ω2t)

)
+ µa1a2 ω1ω2 sin (k1z − ω1t) sin (k2z − ω2t) (23a)

and the potential energy density is

%pot = −
1

2
Tψ∂2zψ =

1

2
µ
(
a21ω

2
1 cos2 (k1z − ω1t) + a22 ω

2
2 cos2 (k2z − ω2t)

)
+

1

2
µa1a2

(
ω2
1 + ω2

2

)
cos (k1z − ω1t) cos (k2z − ω2t) , (23b)

where the dispersionless relationship v =
ω2
j

k2j
= T

µ
has been used. Re�ned models including

di�erent velocities for di�erent frequencies are possible. The total energy density is

% =
1

2
µa21 ω

2
1 +

1

2
µa22 ω

2
2 + µa1a2 ω1ω2 sin (k1z − ω1t) sin (k2z − ω2t)

+
1

2
µa1a2

(
ω2
1 + ω2

2

)
cos (k1z − ω1t) cos (k2z − ω2t) (23c)

The energy �ow is

Φ% =
1

2
T (ψ∂z∂tψ − ∂tψ∂zψ) =

1

2
µ
(
a21 ω

2
1 + a22 ω

2
2

)
v

+
1

2
µa1a2

(
ω2
1 + ω2

2

)
v cos (k1z − ω1t) cos (k2z − ω2t)

+ µa1a2 ω1ω2v sin (k1z − ω1t) sin (k2z − ω2t) . (23d)

It is reassuring that Φ% = % v, as expected. The oscillating terms are of course, the manifes-
tation of the waves interference. The energy density will vary in time and space, depending
on whether the waves, for a given time at a given position, interfere constructively or de-
structively. In an experimental realization, dispersion is inevitable with the concomitant wave
packet spreading. For several purposes, it is su�cient and convenient to work with average
quantities. The temporal average is usually performed. The average energy density is

%̄ =
1

2
µa21 ω

2
1 +

1

2
µa22 ω

2
2 , (24)

Whereas the average �ow is

Φ̄% =
1

2
µ
(
a21 ω

2
1 + a22 ω

2
2

)
v. (25)

The non degenerate frequency functions are orthogonal in the Sturm-Liouville sense and thus,
their contribution will vanish when integrating over the period of the superposed �elds. The
density and �ow coming from the complementary �elds continuity equation are independent
from the internal consistency scheme. However, it may be of concern that the harmonic condi-
tion was imposed in the latter derivation. From the Fourier decomposition, ψ = ψ1+ψ2, where
ψ1 = a1 cos (k1z − ω1t) and ψ2 = a2 cos (k2z − ω2t). For each component, Fy (%pot (ψ1)) =
T∂2zψ1 = −Tk21ψ1 and Fy (%pot (ψ2)) = T∂2zψ2 = −Tk22ψ2. The interference terms deter us
from performing this ansatz directly on the superposed solution.
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