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ABSTRACT
The reciprocity principle requests that if an observer, say in the laboratory, sees an event with a given velocity,
another observer at rest with the event must see the laboratory observer with minus the same velocity. The
composition of velocities in the Lorentz-Einstein scheme does not fulfill the reciprocity principle because the
composition rule is neither commutative nor associative. In other words, the composition of two non-collinear
Lorentz boosts cannot be expressed as a single Lorentz boost but requires in addition a rotation. The Thomas
precession is a consequence of this composition procedure. Different proposals such as gyro-groups have been
made to fulfill the reciprocity principle.

An alternative velocity addition scheme is proposed consistent with the invariance of the speed of light and
the relativity of inertial frames. An important feature of the present proposal is that the addition of velocities is
commutative and associative. The velocity reciprocity principle is then immediately fulfilled. This representation
is based on a transformation of a hyperbolic scator algebra. The proposed rules become identical with the
special relativity addition of velocities in one dimension. They also reduce to the Galilean transformations in
the low velocity limit. The Thomas gyration needs to be revised in this nonlinear realization of the special
relativity postulates. The deformed Minkowski metric presented here is compared with other deformed relativity
representations.

1. INTRODUCTION
There is liberty regarding the choice of mathematical structure selected in order to describe and predict physical
phenomena. Poincaré established this idea, according to Carnap, in the following terms “No matter what
observational facts are found, the physicist is free to ascribe to physical space any one of the mathematically
possible geometrical structures, provided he makes suitable adjustments in the laws of mechanics and optics and
consequently in the rules for measuring length”.1 From my point of view, within such a mathematical structure it
is necessary to establish the relationships between the categories of the theory and the way the physical variables
ought to be measured. Furthermore, the predictions and relationships between variables of the theory should
be compared with observations. These observations are concomitant with the theory on two grounds, firstly the
physical categories that the researcher conceives and decides to observe and secondly, the way these quantities are
to be measured. The observations should be in accordance with the theory within experimental and theoretical
limitations and provide feedback towards the appropriateness and refinement of the abstract models.

Let us translate these rather broad assertions to the specific problem of the velocities of material bodies in
inertial frames. The addition of velocities in special relativity ought to be consistent with the two fundamental
postulates, the constancy of the speed of light and the equivalence of all observers in free inertial motion. In
order to derive Einstein’s theorem of addition of velocities, the separation between space - time events is chosen
as the square root of a quadratic form. Then, the appropriate signature of this form together with a Minkowskian
system of coordinates, leads to the Lorentz transformations.2

However, this choice of a quadratic form need not be unique in order to fulfill the fundamental postulates. To
wit, it may be possible to state velocity composition relationships different from those derived from the Lorentz
transformations, which may nonetheless be consistent with an invariant velocity of light and the relativity
of inertial frames. The present communication explores one such possibility based on a transformation of a
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hyperbolic scator algebra. It should be recalled that amendments to the Lorentz invariant have been proposed
on different grounds by several researchers, in particular regarding a fundamental length at the Planck scale3, 4

and deformed metrics depending on the energy and nature of interactions.5 A highlight of the present proposal is
the consistency with the reciprocity principle without further ado. The reciprocity principle, heuristically stated,
requests that if a reference frame (an observer) sees another frame (an object) receding with velocity v, then
the object sees the observer receding at −v. The gyrogroup theory6 regarding the composite-velocity reciprocity
principle is compared with the present formalism.

In the next section, the new velocity scheme is introduced. Section three compares the present proposal with
the special relativity and Galilean velocity transformations with emphasis on the similarities between the various
approaches. Section four shows the relationship of sequential Lorentz boosts in orthogonal directions with the
new proposal. In section five, the reciprocity principle is addressed. In section six, the Thomas rotation and the
possibility of its absence are briefly discussed. In section seven, this proposal is discussed within the framework
of a deformed metric formulation. Conclusions are drawn in the last section.

2. COMPOSITION OF VELOCITIES SCHEME
Firstly, consider the following proposal for the addition of velocities:

composition of velocities Let two velocity elements be u = (u1, u2, u3) and v = (v1, v2, v3) ; u, v ∈ R
3.

The composition of these elements is given by

v � u ≡
(

v1 + u1
1 + v1u1/c2 ,

v2 + u2
1 + v2u2/c2 ,

v3 + u3
1 + v3u3/c2

)
(1)

where we have used the circled asterisk symbol to represent this operation.
Secondly, allow for a rule to measure the length of a velocity element:
magnitude The magnitude of an arbitrary velocity is defined as

‖u‖d ≡ c

⎡
⎣1 −

3∏
j=1

(
1 − u2

j

c2

)⎤
⎦

1
2

, (2)

where the positive square root is chosen. The sub index j stands for the velocity components in three dimensional
space.

And finally, permit for a new definition of admissible velocity:
admissible velocity An admissible velocity is defined by a velocity element whose individual components

are less or equal to the velocity of light in vacuum u2
j < c2. Admissible velocities are elements in the restricted

space R
3
t = {u ∈ R

3 : u2
j < c2}.

2.1 operation properties
From the symmetry of the variables in the composition operation definition (1) it follows that this operation is
commutative v�u = u�v. Let us then judge whether it is also associative. To this end, consider the successive
addition of elements w� (v � u) = (w1, w2, w3)� [(v1, v2, v3) � (u1, u2, u3)]. Since the addition rule involves the
sum of each component independently for orthogonal components, the coordinate projections may be worked
out separately

wj � (vj � uj) = wj �
vj + uj

1 + vjuj/c2 =
wj + (vj + uj)

(
1 + vjuj/c2)−1

1 + wj

c2 (vj + uj) (1 + vjuj/c2)−1

multiply and divide by
(
1 + vjuj/c2), then

wj � (vj � uj) =
wj + vj + uj + wjvjuj

c2

1 + vjuj +wjvj+wjuj

c2
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The symmetrical way in which the three variables are involved is already suggestive of associativity. But let
us not anticipate; factor

(
1 + wjvj/c2) and finally multiply and divide by

(
1 + wjvj/c2)−1 to obtain

wj � (vj � uj) =
(wj + vj)

(
1 + wjvj/c2)−1 + uj

1 + uj

c2 (wj + vj) (1 + wjvj/c2)−1 = (wj � vj) � uj

The coordinate projections may then be grouped back in vector form to yield w � (v � u) = (w � v) � u.
Therefore, the composition of velocities operation is also associative. The identity element is 0 = (0, 0, 0) and
inversion is identical to vector inversion −u = − (u1, u2, u3) = (−u1, −u2, −u3) ∀u ∈ R

3 . It then follows that
together with closure, the velocity elements form a group under the proposed operation

(
R

3,�
)
. An algebraic

structure that embraces these properties, termed hyperbolic or real scator algebra, is presently being developed.

2.2 magnitude
Consider the magnitude of a three dimensional velocity element in the presently suggested framework. An
admissible velocity requires that u2

j < c2, this inequality may be written as 0 < 1 − u2
j/c2. If each component

satisfies this relationship, their product also satisfies the inequality 0 <
∏(

1 − u2
j/c2); Multiplication of this

expression times minus one, subsequently adding one on both sides and taking the positive square root gives
1 >

(
1 −∏(1 − u2

j/c2)) 1
2 . The right hand side of this inequality times c is precisely the proposed magnitude

definition (2). Therefore, the magnitude is upper bounded by the velocity of light for any admissible velocity
components. The subspace of admissible velocities may then be equivalently written as

R
3
t = {u ∈ R

3 : ‖u‖d < c}. (3)

The magnitude of an admissible velocity is always a real positive quantity. The squared magnitude of the velocity
vector if the product is expanded is

‖u‖2
d =

(
u2

1 + u2
2 + u2

3
)− 1

c2
(
u2

1u2
2 + u2

2u2
3 + u2

3u2
1
)

+ 1
c4 u2

1u2
2u2

3. (4)

2.3 example
Consider an object whose relative velocity with respect to an observer is three quarters the speed of light
u = 3

4 cê1. Let the observer move with respect to another reference frame, say the laboratory frame with an
orthogonal velocity again three quarters of c, namely v = 3

4 cê2. The composition of these velocities in the
proposed scheme (1) gives the velocity of the object as seen from the laboratory frame

u′ = 3
4

cê1 + 3
4

cê2,

as shown in figure 1. It takes a while to recognize that the velocity element with components three quarters the
velocity of light in orthogonal directions has a magnitude in this new scheme equal to

‖u‖d =
√

u2
1 + u2

2 − 1
c2 u2

1u2
2 =

√
9
16

+ 9
16

− 81
256

c =
√

207
256

c ≈ 0.9c

rather than the usual SR vector magnitude ‖u‖ =
√

18/16c ≈ 1.06c! The central difference regarding magnitudes
is twofold, on the one hand, the magnitude in the present proposition exhibits extra crossed terms involving
the products of orthogonal velocity components. On the other hand, admissible velocities in Einstein’s addition
theorem require that

∑
u2

j < c2 whereas in this proposal, admissible velocities impose the less restrictive condition
u2

j < c2.
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Figure 1. Composition of perpendicular velocities in the sequentially invariant relativity (SIR) framework.

3. COMPARISON WITH ORTHODOX VELOCITY TRANSFORMATIONS
Recall that the addition of velocities, according to the Lorentz transformations, may be expressed in vector form
as7

v ⊕ u ≡ 1
1 + v · u/c2

(
v + u + 1

c2
γv

1 + γv
(v × (v × u))

)
(5)

where v, u are admissible velocities in special relativity (SR). The Lorentz factor being γv =
(
1 − v · v/c2)− 1

2 .
The vector magnitudes are given by the usual form ‖v‖ ≡ √

v · v, ‖u‖ ≡ √
u · u and admissible velocities are

defined by R
3
c = {v, u ∈ R

3 : ‖v‖ , ‖u‖ < c}. Notice that the magnitude of the velocity ‖u‖2 = u2
1 + u2

2 + u2
3

has the same Euclidean quadratic form either in special relativity or the Galilean framework∗. In contrast, the
magnitude of the velocity vector in the present proposal does not have an Euclidean form as may be seen from
(4).

3.1 one dimensional relativistic case
Consider the special case of parallel velocities in one dimension, say in the j = 1 direction [2, ch.V-4, p.125]. The
composite velocity obtained from the proposed addition operation ((1)) and from the Lorentz transformations (5)
become identical, v�u = v ⊕ u = (v1 + u1)

(
1 + v1u1/c2)−1 . In this particular case, the magnitude introduced

in e. (4) reduces to the usual single vector component magnitude ‖u‖t = ‖(u1, 0, 0)‖ =
√

u2
1. Furthermore,

the definition of admissible velocity is then the same in either scheme. For admissible velocities, the composite
velocity of any one component is well established to be upper bounded by the velocity of light. Therefore, in the
one dimensional case, the proposed composition rule, magnitude and admissible velocity definitions are identical
to those obtained from the Lorentz transformations.

3.2 low velocity limit
Let us now turn to the three dimensional problem in the low velocity limit. The addition of velocities presented
in equation (1) becomes v � u → v + u = (v1 + u1, v2 + u2, v3 + u3) and it is then equal to the Galilean
transformation of velocities. Furthermore, if the velocity is small compared with c, the magnitude (2) becomes
the usual Euclidean magnitude

lim
uj�c

‖u‖d =

⎛
⎝ 3∑

j=1
u2

j

⎞
⎠

1
2

=
√

u · u.

Hence, the proposed composition operation and its magnitude approach the Galilean addition of velocities and the
vector magnitude in the low velocity limit.

∗Only when the fourth variable is introduced in special relativity is the four vector metric hyperbolic.
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3.3 constancy of the speed of light
Let us appraise the limit where one of the velocities involved approaches the velocity of light. According with
the magnitude definition (2), a velocity whose magnitude is c necessarily has to have at least one projection
whose value is c. Consider the velocity u = (u1 → c, u2, u3) with the component in the ê1 direction approaching
c. The magnitude is

lim
u1→c

‖u‖d = c

[
1 − lim

u1→c

(
1 − u2

1
c2

)(
1 − u2

2
c2

)(
1 − u2

3
c2

)] 1
2

= c

The magnitude then tends to c for any admissible components u2, u3. The velocity of this event in an inertial
reference frame with relative motion v is then lim

u1→c
{v � u} = (v1, v2, v3) � lim

u1→c
(u1, u2, u3)

lim
u1→c

{v � u} =
(

lim
u1→c

{
v1 + u1
1 + v1u1

c2

}
,

v2 + u2
1 + v2u2

c2
,

v3 + u3
1 + v3u3

c2

)
=
(

c,
v2 + u2
1 + v2u2

c2
,

v3 + u3
1 + v3u3

c2

)
.

The magnitude of the velocity in the primed frame u′ = v � u is then

lim
u1→c

‖v � u‖d = lim
u1→c

⎧⎪⎨
⎪⎩c

⎡
⎣1 −

3∏
j=1

(
1 −
(

vj + uj

c (1 + vjuj/c2)

)2
)⎤
⎦

1
2
⎫⎪⎬
⎪⎭ ,

but the limit of the factor with j = 1 in the product is zero

lim
u1→c

{
1 −
(

vj + uj

c (1 + vjuj/c2)

)2
}

= 1 −
(

vj + c

c (1 + vj/c)

)2
= 0.

The magnitude thus approaches the velocity of light lim
u1→c

‖v � u‖d = c for all admissible velocities v = (v1, v2, v3).
Therefore, the proposed framework is in accordance with the constancy of the speed of light limit regardless of the
motion of the source.

4. SEQUENTIAL ADDITION OF VELOCITIES
The transformation of velocities between inertial frames (5) can also be written in terms of parallel and perpen-
dicular contributions [8, p.265], [9, p.523]

u02‖ =
v12 + u01‖(
1 + v12·u01

c2

) , u02⊥ = u01⊥
γv12

(
1 + v12·u01

c2

) , (6)

where v12 is the relative velocity of the frame F1 observed from the frame F2 , u01 is the velocity of the event
(F0 frame ) in the F1 frame and u02 is the velocity of the event observed from the F2 frame†. The parallel
and perpendicular sub indices are the decomposition of the velocities u = u‖ + u⊥ with respect to the relative
velocity v between frames such that u · v = u‖ · v =

∣∣u‖
∣∣ |v|.

4.1 Cartesian decomposition
Consider an event to be at rest u = (0, 0, 0) in a reference frame, say the object frame F0. Let the object move
with velocity v01 = (v01x, 0, 0) in the x direction‡ relative to a frame F1. Let the frame F1 in turn move with

†the common primed, unprimed notation used in the literature has not been employed here to avoid confusion between
many-primed frames.

‡notation v #1
moving
frame

#2
observation

frame

L
projection
direction

, velocity of frame with first sub-index#1 with respect to frame with second sub-

index#2, projectionL (if applicable).
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Figure 2. Sequence of three frames with orthogonal relative velocities. The object in frame F0 has relative velocity v01x

with respect to frame F1. This frame, in turn, has relative velocity v12y with respect to frame F2, and frame F2 has
relative velocity v23z with respect to frame F3. The velocity of the object frame F0 with respect to frame F3 in an
arbitrary direction is v03 given by (7) in SR. The velocity of the frame F0 with respect to F3 in the sequence invariant
proposal is v(SIR)

03 = (v01x, v02y , v03z). In either scheme the magnitude is given by (8).

velocity v12 = (0, v12y, 0) in the y direction with respect to a frame F2. The velocity of the object relative to
the frame F2 is obtained from the SR composition of velocities

v02 = (v02x, v02y, 0) =
(
v01xγ−1

12y, v12y, 0
)

=
(
v01xγ−1

02y , v02y, 0
)

.

Let the frame F2 in turn move with velocity v23 = (0, 0, v23z) = (0, 0, v03z) in the z direction with respect to a
frame F3. The velocity of the object F0 relative to the frame F3 in the SR composition of velocities is

v03 = (v03x, v03y, v03z) =
(
v01xγ−1

02yγ−1
03z , v02yγ−1

03z, v03z

)
. (7)

A Lorentz boost with arbitrary admissible velocity components u = (ux, uy, uz) may be decomposed in a sequence
of three successive orthogonal Lorentz boosts as shown in figure 2. However, such a decomposition is not unique
since the order of the boosts may be interchanged, i.e. the other five possible permutations are

v03 (vy → vx → vz) =
(
vxγ−1

z , vyγ−1
x γ−1

z , vz

)
,

v03 (vx → vz → vy) =
(
vxγ−1

z γ−1
y , vy, vzγ−1

y

)
,

v03 (vz → vx → vy) =
(
vxγ−1

y , vy, vzγ−1
x γ−1

y

)
,

v03 (vz → vy → vx) =
(
vx, vyγ−1

x , vzγ−1
x γ−1

y

)
,

v03 (vy → vz → vx) =
(
vx, vyγ−1

z γ−1
x , vzγ−1

x

)
,

where the arrows represent the composition sequence. Furthermore, these boost sequences have different orien-
tations and the appropriate rotation should be considered in each case if an identical frame to the single boost
is required.

The velocity u = v03 (vx → vy → vz) in terms of the sequence of three boosts (7)

v03 =

⎛
⎜⎝vx

(
1 − v2

y

c2

) 1
2 (

1 − v2
z

c2

)1
2

, vy

(
1 − v2

z

c2

)1
2

, vz

⎞
⎟⎠

has a squared magnitude |u|2 = u2
x + u2

y + u2
z = v2

03x + v2
03y + v2

03z given by

|u|2 = |v03|2 = v2
x

(
1 − v2

y

c2

)(
1 − v2

z

c2

)
+ v2

y

(
1 − v2

z

c2

)
+ v2

z .
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If the products are expanded, we obtain§

|v03|2 = v2
x + v2

y + v2
z − v2

xv2
y

c2 − v2
yv2

z

c2 − v2
zv2

x

c2 +
v2

xv2
yv2

z

c4 ,

that may be factored again into

|v03|2 = c2

[
1 −
(

1 − v2
x

c2

)(
1 − v2

y

c2

)(
1 − v2

z

c2

)]
. (8)

but this result is equal to the expression for the magnitude in the new proposal (2). In this scheme, the order of
the boosts or whether a single boost is performed does not affect the magnitude of the velocity or its projections.
Since the composition of velocities is identical regardless of the sequence or simultaneity in the present proposal,
we refer to it as sequentially invariant relativity (SIR). The velocity components in the new scheme corresponding
to the above magnitude are v(SIR)

03 = (vx, vy, vz) . In contrast, as it is well known, the order of the sequence in SR
leaves the magnitude of the velocity invariant but its projections differ. If the boosts are simultaneous, or from
another point of view, relative to the same observer frame, the magnitude of the velocity in SR is

√
v2

x + v2
y + v2

z

and is no longer equal to the sequential application of the three velocities.
The magnitude of the velocity vector in special relativity (SR) for a sequence of three orthogonal Lorentz

boosts, say vx → vy → vz , is equal to the magnitude in the new proposal (SIR) of a velocity vector with
projections (vx, vy, vz) applied either sequentially or simultaneously.

It may be useful to rewrite the velocity transformations in the new sequentially invariant relativity proposal
in terms of parallel and perpendicular contributions as commonly stated in special relativity (6). From the
velocity composition rule in the present proposal (1),

u02‖ =
v12 + u01‖(
1 + v12·u01‖

c2

) , u02⊥ = u01⊥, (9)

that is, the parallel velocity transforms in the same fashion as in SR whereas the perpendicular velocity in SIR
(in contrast with SR) remains the same regardless of the parallel velocity contribution.

5. COMPOSITE-VELOCITY RECIPROCITY PRINCIPLE
The reciprocity principle regarding velocities may be stated as follows: Let the velocity of an inertial frame Fobj

relative to another inertial reference frame Flab be u′, then reciprocally, the velocity of Flab relative to Fobj is
−u′. A rigorous treatment of the reciprocity principle has been derived from the postulates of (i) homogeneity
of space-time, (ii) isotropy of space and (iii) the equivalence of inertial frames.10

Allow for the velocity u′ to be composed by the addition of two velocities as shown in figure 3. On the one
hand, the composite velocity seen from the laboratory reference frame Flab is the resultant of the velocity u of
the frame Fobj with respect to a vehicle frame Fveh and the velocity v of this vehicle frame with respect to the
laboratory frame Flab . The addition of composite velocities is u′

lab = v � u where the squared plus symbol
stands for whatever addition operation is defined. On the other hand, the composite velocity as seen from the
object reference frame Fobj consists of a velocity −v of the frame Flab with respect to Fveh and a velocity −u of
Fveh with respect to Fobj. Addition of composite velocities then reads u′

obj = (−u)� (−v) = − (u � v). Due to
the reciprocity principle, u′

lab = −u′
obj and therefore the commutative equality v�u = u�v should be fulfilled.

However, the addition of velocities in special relativity is neither commutative nor associative. The lack of
commutation leads to an apparent inconsistency since the reciprocity principle requires the addition of velocities
to be commutative. However, if the coupling between relative velocities and frame orientations is considered, the
velocity reciprocity may be recovered.11 The introduction of a rotation operator in the velocity addition laws,
has allowed for gyro-commutative and gyro-associative laws to produce a gyrogroup.6

§this magnitude is the same for any of the boost sequences.
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Figure 3. Velocity reciprocity principle - A laboratory frame Flab observes a vehicle Fveh with velocity v, the vehicle
emits an object Fobj with velocity u, the object is seen with velocity u′ from the laboratory frame. The object, should
reciprocally observe the laboratory frame with velocity −u′.

In contrast, the composition operation definition (1) that has been introduced here is both commutative and
associative. In order to ascertain the reciprocity principle in the new schema, multiplication by a scalar has
to be defined: Multiplication of a velocity element by a real scalar in SIR follows the distributivity of scalar
multiplication over vector addition in a linear space λu = (λu1, λu2, λu3). In particular, the inverse additive
element of an arbitrary element u = (u1, u2, u3) may be written as −u = (−u1, −u2, −u3) = (−1) (u1, u2, u3).

In SIR, the composition of velocities in the laboratory frame is u′
lab = v � u. On the other hand, the

composition of velocities from the object frame is u′
obj = (−u) � (−v). Thus no paradox arises since it follows

immediately from the composition of velocities (1) that the reciprocity principle is fulfilled because u′
obj =

(−u)� (−v) = − (u � v) = −u′
lab. Velocity is then a purely relative quantity with no preferred state of motion.

6. THOMAS ROTATION
In the preceding two sections the rotation of frames cropped up due to the application of successive boosts
and in order to fulfill the velocity reciprocity principle. Recall that the composition of two successive Lorentz
boosts is equivalent to a single boost followed or preceded by a rotation thus giving rise to the Thomas gyration.
The rotational effect is even clearer if three successive Lorentz boosts with relative velocities adding up to zero
are considered; The initial and final states, say both at rest, are then in general, nonetheless rotated.12 The
infinitesimal rotation is often referred to as the Thomas precession. The Thomas precession most celebrated past
success is that it accounts for a factor of two in the derivation of the electron spin [13, pp. 106-119]. Its present
success lies in the explanation of various paradoxes such as the Mocanu paradox that are ultimately related to
the fulfillment of the reciprocity principle.

The difficulties for grasping the Thomas precession have given rise to many communications.14 These diffi-
culties are not unfounded for there is no fundamental reason, a priori, to request that two Lorentz boosts should
involve a rotation. Furthermore, the (Galilean) addition of velocities of our everyday experience is commutative
and associative even in three dimensions and does not exhibit any sort of rotation. It should be recalled that
this effect was put forward more than twenty years after the special theory was presented and even then it was a
great surprise to many of the founders of the theory.13, 14 It is indeed a consequence of the addition of velocities
rule as stated in Einstein’s proposal, albeit not necessarily a desirable one. What is imperative in the velocity
transformations is that the velocity of light is not surpassed. This crucial requirement is equally fulfilled by the
present proposal as we have already shown.

The lack of commutativity and associativity in the SR addition of velocities together with an invariant
magnitude for the different sequences is the mathematical structure responsible for rotations. The commutativity
and associativity SR addition laws in one dimension15 have to be carefully generalized to three dimensions where
SR laws are neither commutative nor associative.16 Much as it is counter intuitive to recognize the Thomas
rotation, once comprehended, it becomes part of our understanding of special relativity theory. Eighty years
have elapsed since these ideas were first put forward and albeit slowly, they have become now days part of the
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hard core of the theory, specially since the introduction of gyro-groups and their geometrical interpretation by
Ungar and other workers.7, 17

It is not manifest whether the present approach is involving intrinsically a rotation operator in a comparable
fashion as the explicit introduction of a Thomas rotation operator in gyro-groups.7 Alternatively, it is possible
that this scheme is not involving a rotation of the inertial frames at all. A definitive answer to these questions
requires a detailed analysis of the time and space transformations consistent with the present velocity addition
rules. Nonetheless, the commutativity and associativity of the composition of velocities presented here is in-
dicative that no rotations are taking place since rotations in three dimensions differ depending on their order
(commutativity). A sequence of three or four boosts in SR can be devised such that the initial and final frames
are at rest with respect to each other.14 The sequence vêx → v√

1+β2
êy → −v√

1+β2
êx → −vêy with β = v/c

returns the system to rest with its axes rotated in the x-y plane by θ = arcsin
(
β2). In sharp contrast, the above

sequence does not take the system back to rest with respect to the initial frame in SIR. The previous sequence
of four boosts for an event initially at rest give a final frame with velocity

(0, 0, 0) →
⎛
⎝v
(

−
√

β2 + 1 + 1
)

β2 −
√

β2 + 1
,

v
(√

β2 + 1 − 1
)

β2 −
√

β2 + 1
, 0

⎞
⎠ .

However, in the present proposal we can use the sequence vxêx → vyêy → −vxêx → −vyêy for an arbitrary
event initially with velocity (ux, uy, uz), the composition of velocities is then

⎛
⎝ ux+vx

1+uxvx
− vx

1 − vx(ux+vx)
1+uxvx

,

uy+vy

1+uyvy
− vy

1 − vy(uy+vy)
1+uyvy

, uz

⎞
⎠

that can be simplified to the initial velocity (ux, uy, uz). This result is akin to our non relativistic experience
where the sequential addition the velocities in different directions does not produce a rotation.

If the present proposal does not involve rotations for non-collinear velocity compositions, it is then crucial to
see if we can live without the Thomas precession. The first hurdle is to have c bounded velocity transformations
that do not involve rotations, an issue that is possible as we have shown here. The second immediate hurdle is
to explain the electron spin without incurring into the factor of two inconsistency that led Thomas to include
the frame precession as the particle changes direction.

7. DEFORMED SPECIAL RELATIVITY SCHEME
The present proposal may be formulated along the lines of deformed Minkowski metric schemes. These defor-
mations can be dependent for example on the type of interaction,5 Finslerian generalizations of Riemannian
geometry18 or the space anisotropy. The general deformed velocity magnitude in the present scheme is

‖u‖2
def = b2

1 ({O})
b2

0 ({O})
u2

1 + b2
2 ({O})

b2
0 ({O})

u2
2 + b2

3 ({O})
b2

0 ({O})
u2

3

− b2
12 ({O})
b2

0 ({O})
u2

1u2
2

c2 − b2
23 ({O})
b2

0 ({O})
u2

2u2
3

c2 − b2
31 ({O})
b2

0 ({O})
u2

3u2
1

c2 + b2
123 ({O})
b2

0 ({O})
u2

1u2
2u2

3
c4 , (10)

where the metric coefficients b2
j ({O}) are real positive functions. The set {O} represents a set of non-metric

observable variables. An energy dependent deformation {O} → E has been chosen in several frameworks. The
isotropic version of the above deformed velocity magnitude is

‖u‖2
def = b2

s1 ({O})
b2

0 ({O})
(
u2

1 + u2
2 + u2

3
)

− 1
c2

b2
s2 ({O})
b2

0 ({O})
(
u2

1u2
2 + u2

2u2
3 + u2

3u2
1
)

+ 1
c4

b2
123 ({O})
b2

0 ({O})
u2

1u2
2u2

3. (11)
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Table 1. Metric coefficients in different deformation limits.
SIR limit DSR limit SR limit

b2
0 → 1, b2

s1 → 1
b2

s2 → 1, b2
123 → 1

b2
s2 → 0, b2

123 → 0 b2
0 → 1, b2

s1 → 1
b2

s2 → 0, b2
123 → 0

composition is
independent of sequence

energy dependent
metric is allowed

composition is sequence
dependent

If the metric coefficients are equal to one b2
0 ({O}) = b2

s1 ({O}) = b2
s2 ({O}) = b2

123 ({O}) = 1, the SIR
(Sequentially invariant relativity) velocity magnitude given by (4) is recovered. On the other hand, if the
coefficients involving two or more velocity products are zero b2

s2 ({O}) = b2
123 ({O}) = 0, the DSR version

proposed by Cardone and Mignani5 is obtained. If, in addition b2
0 ({O}) = b2

s1 ({O}), the SR Minkowski’s three
component vector metric is recovered. The metric proposal with deformed metric coefficients (11) allows for the
possibility of a smooth space-time deformation. The velocity transformations may then exhibit a sequentially
invariant mapping in the SIR limit and a sequence dependent mapping in the SR limit.

8. FINAL REMARKS
The composition theorem for velocities together with the magnitude presented here have been proved to be
consistent with the two postulates of special relativity, namely the invariance of the speed of light (speed of light
as a limiting value for inertial frames) and the relativity of inertial frames (no preferred reference frame). This
composition operation is commutative and associative in sharp contrast with Einstein’s addition of velocities
obtained from the Lorentz transformations that is neither commutative nor associative in two or three spatial
dimensions.

Regarding similarities, the velocity composition law proposed here is identical to the special relativity (SR)
velocity addition rule in one dimension. In the low velocity limit, the proposed composition operation and its
magnitude approach the Galilean addition of velocities and the Euclidean vector magnitude.

However, major differences arise when non parallel velocities are considered. The present proposal, due to its
group properties, is independent of the sequence in which the frames with different velocities are composed. For
this reason, we refer to the present framework as sequentially invariant relativity (SIR). This framework does
not involve a Thomas rotation for a sequence of non collinear velocity transformations. On the other hand, the
magnitude of the velocity in this proposal involves the product of orthogonal velocity components. The nature of
these nonlinear terms needs to be elucidated. However, a curious result is that the SR magnitude for a sequential
application of boosts in orthogonal directions is equal to the magnitude given in SIR.

Observational data should be in accordance with the predictions of the mathematical structure and its physical
interpretation as mentioned in the first lines of this manuscript. This agreement is often quoted as a test of the
validity of the physical model. From this point of view, it is interesting to recall recent observations of fast receding
astronomical objects, which exhibit very high transverse velocities leading to apparently superluminal speeds.19, 20

It should be most interesting to examine the observed data within the present formulation. Subluminal speeds
are to be expected since the proposed scheme always leads to subluminal velocities even if the parallel and
transverse velocities are arbitrarily close to c.
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