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Abstract

A non distributive scator algebra in 1+2 dimensions is used to map
the quadratic iteration. The hyperbolic numbers square bound set reveals
a rich structure when taken into the three dimensional hyperbolic scator
space. Self similar small copies of the larger set are obtained along the
real axis. These self-similar sets are located at the same positions and
have equivalent relative sizes as the small M-set copies found between
the Myrberg-Feigenbaum point and −2 in the complex Mandelbrot set.
Furthermore, these small copies are self similar 3D copies of the larger 3D
bound set. The real roots of the respective polynomials exhibit basins of
attraction in a three dimensional space. Slices of the 3D confined scator
set, labeled c2i0E1+2(s;x, y), are shown at different planes to give an
approximate idea of the 3D object highly complicated boundary.

Keywords: Fractals; Hyper-complex numbers; 3D hyperbolic numbers; Real
scators; Quadratic iteration; Mandelbrot set.

1 Introduction

The quadratic iteration with hyperbolic numbers has been studied by several
authors [1, 2]. Numeric evaluation of the quadratic iteration for initial z0 = 0
gives rise to a square centered at− 7

8 with sides equal to 9
4
√

2 ≈ 1.591. The square
diagonals lie parallel to the real and hypercomplex axes. It has been shown that
if the bound criterion for a hyperbolic number a+b ê, (ê· ê = 1, ê /∈ R) is a2 ≤ ε
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and b2 ≤ ε, the bound set is equal to a square [3]. This set is the counterpart
of the Mandelbrot set for complex numbers but in two dimensional hyperbolic
geometry. The boundary for the hyperbolic set, is made up of four straight lines
void of the complexity shown by the M-set. There are neither small-copies of
the set nor a structure within the bound region as can be seen in figure 1. All
points in the real axis interval

[
−2, 1

4
]
yield bounded iterations. These points

are common to both, the complex and the hyperbolic sets, since the reals are a
subset in either case.
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(a) Bounding condition is a2, b2 ≤ 4.
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(b) Bounding condition is a2 − b2 ≤ 4.

Figure 1: Bound set (in light gray) under quadratic iteration of hyperbolic num-
bers c2i0H. The bound set is equal for both escape velocity criteria although
the velocity maps are quite different (evaluation for each point is limited to 60
iterations).

On the other hand, the sets obtained for arbitrary initial point z0 give rise
to rectangles [3]. These rectangles obtained for the hyperbolic case, are the
twins of the filled in Julia sets Kc, for the quadratic iteration in the complex
plane. It has been pointed out that if the bound criterion is established with the
hyperbolic number magnitude a2−b2 ≤ ε, the confined set need not be rectangles
[4]. Nonetheless, numeric evaluations using the hyperbolic number’s magnitude
|z|2 = a2−b2 still yield squares for the hyperbolic M-set and rectangular figures
for the Kc sets. Panchelyuga et al. [5] have argued that this result is due to
rounding errors introduced by the computing algorithms when dealing with the
difference of very large numbers. Indeed, we must recall that divergent points
grow very quickly as exemplified by Douady [6] for complex numbers: If the
modulus of |zn| is greater than 2, the modulus after twelve iterations |zn+12|, is
greater than the ratio of the volume of the known universe to the volume of a
proton. In figures 1a and 1b, we show the numerical results for the hyperbolic
M-set using these two ’bailout’ criteria. The bound set is identical in either
case but the escape velocity contours are much richer in the calculations that
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estimate distance with the hyperbolic metric criterion.
In this communication, we introduce a three dimensional hypercomplex alge-
bra that contains the hyperbolic H numbers when only two components are
considered. The hyperbolic or real scator algebra product is associative and
commutative provided that divisors of zero are excluded. However, the prod-
uct does not distribute over addition but in some special cases. It is possible
to establish well defined rules for the quadratic mapping with real scator alge-
bra. That is, the square and addition operations, although not bilinear, can be
consistently constructed. Furthermore, an order parameter can be established
so that a bound criterion can be employed. The bound set produced by scator
numbers under the quadratic iteration mapping, exhibit small self-similar copies
of the larger set. The boundary of the confined set has a rich structure. The
contours of the iso-escape velocity sets also show rather elaborate patterns.

2 Hyperbolic scators

Hyperbolic or real scators are hypercomplex numbers that generate a non dis-
tributive algebra in 1 +m dimensions [7]. In 1+2 dimensions (or higher dimen-
sions), when a second hyper-axis is introduced, divisors of zero arise and there
is no longer distributivity of the product over the sum. Real scator elements in
1+2 dimensions can be written as ordered triads in R3

o
ϕ= (F0;F1, F2) , Fj ∈ R.

The first component with subindex zero is labeled as the scalar component
whereas subsequent components are termed the director components. Scator
elements are labeled with an oval placed overhead1.

The addition operation for scators o
α,

o

β is defined component-wise
o
α +

o

β ≡ (A0;A1, A2) + (B0;B1, B2) = (A0 +B0;A1 +B1, A2 +B2) .

The scator set is a commutative group under the addition operation. The
product or multiplication operation of two scators, o

α = (A0;A1, A2) and
o

β =
(B0;B1, B2) is defined by o

γ = o
α

o

β = (G0;G1, G2), where the scalar component
of the product is

G0 = A0B0 +A1B1 +A2B2 + A1B1A2B2

A0B0
(2.1a)

and the director components of the product are

G1 = B0A1 +A0B1 + A1A2B2

A0
+ A2B1B2

B0
, (2.1b)

1\overset{o} in LATEX lore
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G2 = B0A2 +A0B2 + A1A2B1

A0
+ A1B1B2

B0
. (2.1c)

In order to have a well defined product, it is necessary that the scalar compo-
nents are different from zero if two or more director components are different
from zero in both factors

A0, B0 6= 0 if A1B1, A2B2 6= 0. (2.2)

This condition avoids divergences in the definitions of the scalar and director
components. The subspace space E1+2 ⊆ R3, where the product is well defined
is (

E1+2, ·
)

=
{

o
α,

o

β ∈ E1+2 : A0, B0 6= 0 if A1B1, A2B2 6= 0
}
.

Hyperbolic 1+2 dimensional scators form a commutative group under the prod-
uct operation provided that non invertible elements and divisors of zero are
excluded. Elements are invertible if F0 6= F1, F0 6= F2, and F0 6= 0 if any two
director elements are different from zero. Furthermore, zero divisors of invert-
ible elements are obtained if A1B1 = −A0B0 and A2B2 = −A0B0 are excluded.
The subspace E2

g where the product forms a commutative group is(
E2

g, ·
)

=
{

o
α,

o

β ∈
(
E1+2, ·

)
: o
α,

o

β 6= 0, A0 6= Ak, B0 6= Bk,
AkBk

A0B0
6= −1, k = 1, 2

}
.

(2.3)

The conjugate of a scator o
ϕ = (F0;F1, F2) is defined by the negative of the

director components while the scalar component remains unchanged
o
ϕ
∗
≡ (F0;−F1,−F2) . (2.4)

The square of the magnitude of a scator
∥∥∥ o
ϕ

∥∥∥2
is given by the scator times its

conjugate is ∥∥∥ o
ϕ

∥∥∥2
= o
ϕ

o
ϕ
∗

=
(
F 2

0 − F 2
1 − F 2

2 + F 2
1F

2
2

F 2
0

; 0, 0
)
. (2.5)

Notice that the special relativity metric is recovered for F 2
0 � F 2

1 , F
2
2 if the

scalar component is identified with time and the director components with two
spatial axes. On these grounds, an alternative composition of velocities in a
deformed Lorentz metric has been proposed using real scator algebra [8]. If
condition (2.3) is fulfilled, the scator product of the norm is equal to the norm
of the scator products. This identity permits a generalization of Lagrange’s
identity. Furthermore, the scator norm product identity produces an infinite
number of series identities [9].
In 1+1 dimensions, real scator algebra becomes identical to hyperbolic numbers
algebra as may be readily seen from the product definition with any of the
two director components with subindex 1 or 2 equal to zero. If we label the
axes (F0;F1, F2) by s, ê1 and ê2, either plane s, ê1 or s, ê2 is identical to the
hyperbolic number’s plane.
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3 Iterated quadratic mapping

The quadratic mapping is given by

o
ϕ=

o
ϕ

2
0 + o

c,

where the variable
o
ϕ and the constant o

c are now scator elements. The iterated
function satisfies the recurrence relationship

o
ϕn+1 =

o
ϕ

2
n + o

c,

where the subindex stands for the iteration number. Julia sets in E1+2 are
obtained by fixing o

c and letting
o
ϕ0 vary in the real scator set E1+2. The points

where the sequence
o
ϕn remains bounded comprise the corresponding filled in

Julia set in E1+2. The Mandelbrot like set is obtained by fixing the initial
point

o
ϕ0= (0; 0, 0) and varying the parameter o

c. Bounded points obtained
with the latter procedure comprise the corresponding M-set in E1+2. There are
an infinite number of Julia sets on the complex plane. This number increases
exponentially with dimension. Moreover, there are also many slices of the M-set
in E1+2 compared with the unique sets obtained in C or H. We propose the
following notation to allow for some sort of orientation in this maze!

c2i confined {2}quadratic iterations, (that can be generalized to cpi for a pth

power polynomial or p→ func for other function’s mappings)

• followed by 0 if the initial value of the variable is set to zero or (F0;F1, F2)
if the initial constant is fixed to (F0;F1, F2).

• followed by the number set: R real, C complex, H hyperbolic, E1+m real
scator (in 1+m dimensions), etc.

• followed, if necessary, by the plane (D0;D1, D2) that is being depicted.

Thus, the filled in Julia set in the complex plane Kc for the point z = a + ib
is the c2i(a, b)C set, whereas the Mandelbrot set in the complex plane is the
c2i0C set. The Kc set for hyperbolic numbers is c2i(a, b)H set and the M-set
is c2i0H set. This latter set is depicted in figure 1b. The confined set is a
square with smooth boundary. However, the layout of the escape values outside
the set is already indicative of a richer structure. Since hyperbolic numbers
are equivalent to scators with only one director component H→ E1+1, the sets
c2i0H and c2i0E1+1 are equal [7].

The M-like set for real scators in 1+2 dimensions, according with the proposed
notation, is written as the c2i0E1+2 set. This c2i0E1+2 set is no longer in two
dimensions but in a three dimensional space. To commence its visualization,
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let us study ’slices’ or surfaces in the s − ê1 plane for constant ê2 component.
Consider a constant scator with a very small hypercomplex constant in the
second director component o

c =
(
c0; c1, 10−17)

. The bound set, shown in figure
2, changes dramatically compared with the square (Fig. 1) observed when
F2 = 0. There is a rich structure within the square boundary.

-2.2 -1.1 0. 1.1 2.2

2.2

1.1

0.

-1.1

-2.2

1.´10
-17

Figure 2: c2i0E1+2(
c0; c1, 10−17)

set (bounded areas in light gray) under
quadratic iteration for real scators with second director equal to F2 = 10−17, lim-
ited to 60 iterations. The abscissa corresponds to the real or scalar s axis where
c0 is plotted, while the ordinate corresponds to the first director component ê1
where c1 is plotted (êx and x respectively in the low dimension notation).

Notation for low dimensional problems: When dealing with few dimensions it
is simpler to label each component with a different letter and to allow for the
subindex to represent the iteration number. In contrast, for the generalization
to many dimensions, it is better to keep the subindex to label the component
director elements.

The square of a scator is obtained from the product definition (2.1a)-(2.1c)
between two equal scators. Let

o

β = o
α = o

ϕ = (s;x, y), the scator squared is

o
ϕ

2
=

(
s2 + x2 + y2 + x2y2

s2 ; 2sx+ 2xy2

s
, 2sy + 2yx2

s

)
. (3.1)
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Recall that divisors of zero for non invertible elements are obtained if the equal-
ities A1B1 = −A0B0 and A2B2 = −A0B0 are fulfilled. For the quadratic
mapping, these conditions are excluded, since for equal scators, they imply that
x2 = −s2 and y2 = −s2. However, since s, x, y are real, the condition is never
attained. Therefore, the only non associative elements come from non invertible
elements with x2 = s2 or y2 = s2.

On the other hand, distributivity of the product over addition does not hold.
Consider the second iteration in terms of the initial value

o
ϕ3 =

o
ϕ

2
2 + o

c =
(

o
ϕ

2
1 + o

c

)2
+ o
c =

(
o
ϕ

2
1 + o

c

) (
o
ϕ

2
1 + o

c

)
+ o
c. (3.2)

This scator is not equal to
o
ϕ
′
3 =

o
ϕ

4
1 +2o

c
o
ϕ

2
1 + o

c
2

+ o
c. The numerical procedure

evaluates the scator in each iteration and then proceeds to the next. Therefore,
it produces sequences of the form described by equation (3.2). Notice that for
hyperbolic numbers or scators with a single director component distributivity
holds,

o
ϕ2 (s; 0, y) =

o
ϕ
′
2 (s; 0, y) and either expression yields the same results.

Let us return to figure 2; It is symmetrical with respect to the hypercomplex
ordinate axis êx. Let us confirm that this is the expected result. The first two
iterations starting with

o
ϕ0 = (0; 0, 0) are

o
ϕ1 = o

c and
o
ϕ2 = o

c
2

+ o
c. The scator

number squared plus the scator is

o
ϕ2 = (s2;x2, y2) =

o
ϕ

2
1 +

o
ϕ1 =(

s2 + x2 + y2 + x2y2

s2 + s; 2sx+ 2xy2

s
+ x, 2sy + 2yx2

s
+ y

)
. (3.3)

The resulting êx director component is 2sx+ 2xy2

s +x. This expression is an odd
function of x, thus upon iteration, the function will be equal but with opposite
sign under the transformation x → −x. The bound criterion to establish the
confined set is the squared magnitude

∥∥∥ o
ϕ

∥∥∥2
=

(
s2 − x2 − y2 + x2y2

s2 ; 0, 0
)
. This

function is even under inversion of any of the axes. Therefore, the confined set,
or the escape velocity iso-surfaces must be symmetric about the êx ordinate
axis. An equivalent reasoning leads to symmetry about the êy axis. On the
other hand, the bound set is asymmetrical with respect to the scalar (or real)
s axis. Indeed, from the above expression, the transformation s→ −s does not
have a well defined parity for the resultant scalar term s2 + x2 + y2 + x2y2

s2 + s.
Thus, the iterated map will not be equal under inversion of the scalar axis. These
symmetries can be extended by induction to the nth iteration. To summarize,
the symmetries under inversion of the director axes are

sn (s;x, y) = sn (s;−x, y) = sn (s;x,−y) ,

xn (s;−x, y) = −xn (s;x, y) , xn (s;x,−y) = xn (s;x, y) ,
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yn (s;x,−y) = −yn (s;x, y) , yn (s;−x, y) = yn (s;x, y) .
Symmetries under the director axes exchange are

sn (s;x, y) = sn (s; y, x) , xn (s;x, y) = yn (s; y, x) , yn (s;x, y) = xn (s; y, x) .

There is therefore also symmetry with respect to the 45° planes in the director
axes.
The bound set in figure 2 has an inner square on the right with a roundish centre.
Let us analyze this feature. If the scalar becomes small, all three components
in iteration (3.3) become large for nonzero director components. Allow for y to
be negligible in the scalar term second iteration; Impose the condition s2 → 0,
so that the scalar term will produce a very large scator on the third iteration,
s2 +x2 +s = 0. Notice that the s terms can be collected as s2 +s =

(
s+ 1

2
)2− 1

4 .
The equation is then

(
s+ 1

2
)2 + x2 = 1

4 , that is a circle of radius 1
2 centered at(

− 1
2 ; 0, 0

)
. Therefore, the roundish rim feature where the set is unbounded is

due to the scalar component becoming very small. It is of course not strictly a
circle because the non-zero second director term has been neglected. This shape
is distorted as the y plane is further away from the origin as can be seen in figure
5. The roundish centre has two asymmetric triangular arrows on its sides. The
point where the arrow on the right is joined to the main body is s = 0. The tip
of this arrow is located at s = 1

4 as expected from the real axis bound interval[
−2, 1

4
]
. The arrow on the left is in fact a sequence of smaller copies of the main

body, a feature that is observed when the iteration limit is increased. The upper
and lower symmetric structures blend with a ragged bound region inscribed in a
larger square. The ragged boundary seems to split into a Fatou dust-like fractal.
The scale has been maintained equal to that of figure 1b to show that the escape
velocity contours remain fairly similar in either case. The coordinates s and x
are scanned from −2.2 to 2.2 in both figures.

3.1 self-similarity - small copies

Let us have a closer look at the negative real scalar axis of the c2i0E1+2(
s;x, 10−17)

set in figure 3. It reveals smaller copies of itself! The pattern of the escape ve-
locities in the vicinity of the set is quite complex. It exhibits straight bands at
45° whenever there is a copy of the larger set. Simultaneously there are well
defined curves that resemble arcs of circles or parabolae in the midst of rather
complicated structures. In figure 3a, several small copies of the larger set are
observed between −2 and −1.4. The copy centered at −1.769 · · · is shown on
a larger scale in figure 3b. The number of iterations was increased as smaller
regions are magnified, in order to preserve a similar resolution in the observed
patterns. Its structure is remarkably similar to that of figure 2. It reproduces
the roundish centre with symmetric arrows on its sides and the symmetric struc-
tures above and below merging with a shred bound region inscribed in a larger
square. It also exhibits even smaller copies of itself at a much smaller scale in
between −1.792 and −1.7805.
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(a) inset of figure 2 with magnification ×5.5,
limited to 90 iterations

-1.792 -1.7805 -1.769 -1.7575 -1.746

0.023

0.0115

0.

-0.0115

-0.023

1.´ 10
-17

(b) inset of figure 3a with magnification ×17.4
limited to 160 iterations (mag. ×95.6 of figure
2)

Figure 3: Detail of the region between −1.3 and −2 on the left hand side of
the c2i0E1+2(

s;x, 10−17)
set shown in figure 2. Self-similar smaller copies with

different sizes of the diamond-like figure are observed along the scalar axis!

This result is of course reminiscent of the self copies of the M-set in the complex
plane c2i0C. In figure 4, we compare the position of the on axis cardioïds with
the self-similar copies of the c2i0E1+2(

s;x, 10−17)
set. The cardioïds situated

between the Myrberg-Feigenbaum (MF) point −1.401 . . . and −2 of the complex
Mandelbrot set [10], are located at exactly the same positions on the real axis
as the self- similar rhomboid-like figures of the c2i0E1+2(

s;x, 10−17)
scator set

within computer error. Furthermore, the relative size of the small cardioïd-like
components are proportional to the relative size of the rhomboid-like figures.
For example, focus on the largest of these small copies located with its cusp
at −1.75 . This cusp corresponds to the right hand corner of the rhombus-like
figure located at this very same point. There are an infinite number of small
copies of the larger M-set. The c2i0E1+2 set seems to also have an equivalent
infinite number of small copies of itself in the vicinity of the scalar axis. Just
as the M-set has a period doubling cascade region converging towards the MF
point, there are an infinite number of smaller diamond like figures in the scator
set, apparently converging to this very same periodic-chaotic limit.

3.2 Planes with constant second director value

We have shown that a rich fractal like structure is revealed if the second di-
rector component is set to small value different from zero, (illustrated with
y = 10−17). In figure 5, we show a sequence of sets from c2i0E1+2(

s;x, 10−20)
9



-2.075 -1.8875 -1.7 -1.5125 -1.325

0.171053

0.0855263

0.

-0.0855263

-0.171053

-2.075 -1.8875 -1.7 -1.5125 -1.325

0.171053

0.0855263

0.

-0.0855263

-0.171053

Figure 4: Comparison between cardioïds in the real axis for the M-set and self-
similar copies of the c2i0E1+2(

s;x, 10−17)
scator set. The self-similar figures

are located at exactly the same points (within computer error) on the real axis
for either set.

to c2i0E1+2(
s;x, 10−1)

. Each point is evaluated starting with
o
ϕ0= (0; 0, 0) and

o
c = (s;x, y), s is scanned from −2.125 to 0.375, while x is scanned from −1.25 to
1.25. The bounded region becomes smaller and departs form the diamond-like
shape moving steadily towards a bird-like form as y is increased. The imprint is
always squeezed in the forefront to the right in a plane where s = 0. This result
is expected because the scator magnitude (2.5) has a term x2y2

s2 that diverges
for non zero x, y. Thus, no scator iteration can be bound in the region where
this term becomes very large. The wings have a central lobe and possibly a
second smaller lobe. They become fuzzy on the edge where a Fatou dust like
boundary is observed. The arrow on the left side becomes a tail with three pro-
tuberances. The upper and lower bulges resemble smaller copies of the wings.
The protuberance on the left is a copy of the larger protuberance, most likely
with doubling period just as the buds in this region in the complex Mandelbrot
set. Eventually, at y = 0.1, the tail is almost detached from the main body.

In another sequence, depicted in figure 6, we show sets from c2i0E1+2(s;x, 0)
to c2i0E1+2(s; y, 1.1) in steps of 4y = 0.1. Again, points are evaluated starting
at

o
ϕ0= (0; 0, 0) and o

c = (s;x, y), s is scanned in the ±1.25 interval centered
at − 7

8 = −0.875 , while x is centered at 0. The first and second insets in
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Figure 5: Slices for small y values in the s, êx plane of the bound quadratic iter-
ation c2i0E1+2(s;x, y) set with constant second director component y between
0 and 0.1 labeled on the upper border of each frame.

figure 6 correspond to the initial and final insets in figure 5. The bound set
becomes smaller as the distance from y = 0 increases. There are no longer
visible bound points at y = 0.2 for positive s (The bird looses its head). At
y = 0.3, the remnants of the left arrow vanish and the bound region lies within
the (−0.875, 0) interval (The bird looses its tail). The out-most bound point
must be located at y = 9

8 = 1.125 where the upper tip of the diamond is located.
Recall that there must be a diamond-like shape in the perpendicular s, êy plane
identical to the one shown in the first s, êx inset. This feature is not visible in
the last inset of figure 6 because the tip becomes very thin and is thus difficult
to see at this magnification. Indeed, from the sequence in figure 5, it can be
seen that the tip is approximately 10−7 thick between 1.0 and 1.125.

4 The x, y hypercomplex - hypercomplex plane

Consider planes where the scalar component s is maintained constant, while the
values in x, y are scanned. These plots are entirely new since both axes are now
hypercomplex axes; There is no real axis in these plots! Confined sets should be
obtained, at least in the vicinity of the origin, in the interval where s is between[
−2, 1

4
]
. In figure 7, c2i0E1+2(0.1;x, y) to c2i0E1+2(−1.1;x, y) sets are shown

in steps of 4s = 0.1 for scans in x, y of ±1. There are also confined sets images
beyond s = 1.1 but with much smaller dimensions. The sets produced at x, y
planes where self similar copies were observed in the s, x plane, also exhibit
self similar structures in the x, y plane. Besides the inversion symmetry in the
director components described in the previous section, there is symmetry when
the two director components are interchanged in equation (3.3). Therefore, there
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0. 0.1 0.2 0.3

0.4 0.5 0.6 0.7

0.8 0.9 1. 1.1

Figure 6: Slices of the bound quadratic iteration c2i0E1+2(s;x, y) set with y
hyper-axis between 0 and 1.1 in 0.1 steps. The abscissa s is scanned in the
±1.25 interval centered at −0.875 whereas the ordinate x is scanned in the
same interval but centered at the origin.

is an additional 45° symmetry in the x, y plane as observed in the numerical
results. The ek2-like figure depicted at s = 0.1 is repeated at various planes,
for example from −0.6 to −0.9. The four turbans in the diagonals of inset at
s = −0.2 alternate with diploid figures on the axes lines. At s = −0.4 straight
lines with fuzzy edges come out producing a square shape. In the following
insets remnants of the straight lines are displaced towards the edges until frame
s = −0.9. At −1.0 an interlaced necklace can be seen with four droplets or
tilab3 at the ends. These tilab are made up of ever-smaller tilabs. There is a
loltun4 at the centre of the figure. The halo around the central confined figure
is also a feature that reappears again and again, as may be seen in the last inset
of figure 7.

2ek-chaneb - star with four spikes in Mayan language.
3tilab - arrow in tseltal, one of the Mayan languages still spoken in southern Mexico.
4loltun - stone flower.
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0.1 -0.1 -0.2 -0.3

-0.4 -0.5 -0.6 -0.7

-0.8 -0.9 -1. -1.1

Figure 7: Slices of the c2i0E1+2(s;x, y) sets (in light gray) shown at constant
scalar component s. The x, y plane scans, where both axes represent hypercom-
plex components, span from −1 to 1 in both directions for all insets.

5 Conclusions

The quadratic iteration in three dimensional real scator space exhibits a rich
boundary structure with complex escape velocity surrounding patterns. The
hyperbolic numbers square bound set is obtained when the real scator numbers
are constrained to only two non vanishing components.
Self similar small copies of the larger bound set are obtained in the scalar (real)
axis located at the same positions and relative sizes of the small M-set copies
found on the real axis for the complex Mandelbrot set. Attractive fixed points
are obtained when the quadratic function composition R (R (R (z))) · · · = Rn (z)
returns the original argument Rn (z0) = z0. In the real axis, they are obtained
from the real roots of the polynomials z = 0, z2 + z = 0, for a 1 period cycle;(
z2 + z

)2 + z = 0, for a 2 period cycle;
((
z2 + z

)2 + z
)2

+ z = 0, for a 3 period
cycle, etc. Remember that R is also a subset of the 1+m dimensional real scator
set. Thus these roots, are also roots of the 1+2 dimensional scator set. Recall
that the logistic map exhibits a one to one correspondence with the M-set on the
real axis. The Mandelbrot period doubling points coincide with the bifurcation
points of the Verhulst process. The c2i0E1+2 set exhibits this same one to one
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Figure 8: Three dimensional rendering of the c2i0E1+2(s;x, y) set produced
with P. Willenius rendering program [11] . The bud on the far left (in light
blue) is a self similar copy of the larger set. The straight lines leading to ver-
tices, sharper on the upper part and in perspective comming out of the page,
correspond to the squares obtained for the planes x = 0 and y = 0.

correspondence with the bifurcation diagram of the logistic map. As we have
shown, it suffices to lift the second hypercomplex axis by 10−20 to reveal this
structure. It is known that there are an infinite number of real polynomials’
roots on this axis that come from the nth cycle periods. Each of the fixed points
has a basin of attraction. Furthermore, each of them exhibit self similar copies
of the larger set. Hence, for the quadratic iteration with real scators, there are
basins of attraction around the attractive fixed points in the scalar axis. These
basins are observed in the s, x plane as shown in figure 3, the s, y plane (that is
identical to the s, x plane) and the x, y plane as seen from figure 7. Thus, this
real scator fractal set exhibits basins of attraction in a three dimensional space.
Moreover, these small copies are self similar 3D copies of the larger 3D bound
set.

Many questions open up regarding these new fractal structures. So far, we
have found no evidence of self-similar structures lying outside the scalar axis.
Whether they exist is an open problem. Little has been mentioned regarding
the Julia sets produced with real scator numbers c2i(cs; cx, cy)E (s;x, y) and its
relationship with the c2i0E1+2(s;x, y) set. This issue will be undertaken in a
forthcoming communication. The c2i0E1+2(s;x, y) set is much more difficult to
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explore than the complex M-set since it involves a three dimensional structure.
Two dimensional renderings can be made not only in planes with one constant
component (as have been shown here) but also in inclined planes and even in non
planar surfaces. Magnifications of different regions of the c2i0E1+2(s;x, y) set
reveal extraordinary structures that we have only glimpsed at in an unsystematic
fashion. 2D movies should prove useful to visualize the intricacies of the set
[12]. Three dimensional renderings should also turn out to be very useful to
visualize the nature of these confined quadratic iteration real scator sets. We
have produced some preliminary images using a 3D rendering program [11] as
the one reproduced in figure (8). The 3D self similar smaller set located around
(−1.75, 0, 0) is clearly visible. The two diamond shapes at the planes where
one of the hypercomplex components is zero are also reckoned as well as the
squeezing around the s = 0 plane on the far right. The various layers and the
way they coalesce are an ode to mathematical enchantment.
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