Letter to referee FRACTALS -D-12-00044,
All suggestions are welcome and have been incorporated:

comment 1

Typos in equation (3.2) and the one on the line below have been corrected. The equation now is:
"On the other hand, distributivity of the product over addition does not hold. Consider the second iteration in terms of the initial value

$$
\stackrel{o}{\varphi}_{3}=\stackrel{o}{\varphi}_{2}^{2}+\stackrel{o}{c}=\left(\stackrel{o}{\varphi}_{1}^{2}+\stackrel{o}{c}\right)^{2}+\stackrel{o}{c}=\left(\stackrel{o}{\varphi}_{1}^{2}+\stackrel{o}{c}\right)\left(\begin{array}{l}
o^{2} \\
\varphi_{1}
\end{array}+\stackrel{o}{c}\right)+\stackrel{o}{c} .
$$

This scator is not equal to $\stackrel{o}{\varphi}_{3}^{\prime}=\stackrel{o}{\varphi}_{1}^{4}+2{\stackrel{o}{c} \stackrel{o}{\varphi}_{1}^{2}}_{\varphi^{2}}^{o^{2}}+\stackrel{o}{c}$. "

comment 2

The symmetries have been explicitly written as suggested by the referee. Two sentences were added:
"These symmetries can be extended by induction to the nth iteration. The symmetries under inversion of the director axes are

$$
\begin{gathered}
s_{n}(s ; x, y)=s_{n}(s ;-x, y)=s_{n}(s ; x,-y) \\
x_{n}(s ;-x, y)=-x_{n}(s ; x, y), \quad x_{n}(s ; x,-y)=x_{n}(s ; x, y) \\
y_{n}(s ; x,-y)=-y_{n}(s ; x, y), \quad y_{n}(s ;-x, y)=y_{n}(s ; x, y)
\end{gathered}
$$

Symmetries under the director axes exchange are
$s_{n}(s ; x, y)=s_{n}(s ; y, x), \quad x_{n}(s ; x, y)=y_{n}(s ; y, x), \quad y_{n}(s ; x, y)=x_{n}(s ; y, x)$.
There is therefore also symmetry with respect to the 45° planes in the director axes."

comment 3

The following paragraph was added to the conclusions to include the comparison with the logistic map as suggested by the referee.
"Recall that the logistic map exhibits a one to one correspondence with the M-set on the real axis. The Mandelbrot period doubling points coincide with the bifurcation points of the Verhulst process. The $\mathbf{c} 2 \mathbf{i} 0 \mathbb{E}^{1+2}$ set exhibits this same one to one correspondence with the bifurcation diagram of the logistic map. As we have shown, it suffices to lift the second hypercomplex axis by 10^{-20} to reveal this structure"

