Dear Joy Quek:
WSPC Journal Office
Fractals

After I reviewed the manuscript FRACTALS -D-12-00044, I consider that it is a good paper for publishing in Fractals, after a minor revision.
Comments on the paper:
Fractals with hyperbolic scator in $1+2$ dimensions.
Ref.: Ms. No. FRACTALS -D-12-00044.
I found this paper very interesting and important, due to the original use of the hyperbolic scator. I recommend to accept it for publication with minor changes that I mention below. 1.- The equation 3.2 has a mistake, which also appears on the row below equation 3.2.
2.-In section 3, I suggest to write explicitly the symmetry of the components of the scator $\dot{\varphi}_{2}\left(s_{2}, x_{2}, y_{2}\right)$, i.e.

$$
\begin{aligned}
& s_{2}(s, x, y)=s_{2}(s, y, x) ; \\
& s_{2}(s,-x, y)=s_{2}(s, x, y) ; \\
& s_{2}(s, x,-y)=s_{2}(s, x, y) ; \\
& x_{2}(s, y, x)=y_{2}(s, x, y) ; \\
& x_{2}(s,-x, y)=-x_{2}(s, x, y) ; \\
& y_{2}(s, x,-y)=-y_{2}(s, x, y) ;
\end{aligned}
$$

3.- In the paper the author shows a beautiful numerical comparison between the real axis for the Mandelbrot set and the $\mathbf{c 2 i} 0 \mathrm{E}^{2}\left(\mathrm{~s}, \mathrm{x}, 10^{-17}\right)$ set. However, his results can also be compared with the quadratic map
$F_{s_{0}}(s)=s^{2}+s_{0}$
the $\mathbf{c} 2 \mathbf{i 0} \mathrm{E}^{2}(\mathrm{~s}, \mathrm{x}, 0)$ set doesn't show any interesting structure on the real axis, but surprisingly the $\mathbf{c} 2 \mathbf{i 0} 0 \mathrm{E}^{2}\left(\mathrm{~s}, \mathrm{x}, 10^{-17}\right)$ set, reproduces all the bifurcation diagram of $F_{s_{0}}(s)$. I suggest the author to take into account this fact in his conclusions.

Sincerely Yours
Dr. José Luis del Río-Correa.

