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Abstract

The quadratic iteration is mapped using a non distributive real scator algebra in
three dimensions. The bound set, labeled c2i0E2

+, has a rich fractal like bound-
ary. Periodic points on the scalar axis are necessarily surrounded by off axis
divergent magnitude surfaces. The three dimensional set exhibits self-similar
3D copies of the elementary fractal along the negative scalar axis. Nonetheless,
the two dimensional projection becomes identical to the non-fractal quadratic
iteration produced with hyperbolic numbers. Two and three dimensional ren-
derings are presented to explore some of the features of the c2i0E2

+ set. New
algorithms are needed to visualize the intricacies of these higher dimensional
fractal sets.

Keywords: Fractals; Hyper-complex numbers; 3D hyperbolic numbers; Real
scators; Quadratic iteration; Mandelbrot set, Discrete dynamical systems.

1. Introduction

Two dimensional fractal structures have often been extended to higher dimen-
sions. For example: Sierpinski triangles are extended to three dimensional tetra-
hedrons that produce square based pyramids; Sphere inversion fractals as a
generalization of circle inversion [11]; Mandelbulb [1], Mandelbox and several
other approaches to generalizations of fractals in the complex plane to three
or four dimensions. However, the generalization does not always produce a
higher dimensional fractal structure. For example, quaternion quadratic iter-
ations in parameter space produce solids of revolution with an M-set section.
The visualization of fractal geometry, even in two dimensions, is a rich subject
[3]. Visualization of three dimensional structures is even more complicated and
requires complex and cpu-time consuming algorithms [5].

It is not common practice to proceed the other way around. Namely, to pro-
duce a three dimensional fractal structure and thereafter obtain two dimensional
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projections of these objects. In the present approach, the three dimensional
product and addition operations required to produce a quadratic mapping are
introduced. The iteration of the quadratic function with three variables is com-
pared with an appropriate order parameter. The outcome is a bound set with
a rather intricate boundary that is rendered with an ad hoc 3D fractal visual-
ization software. It comes as a surprise that a three dimensional confined set,
produced with real scator algebra, exhibits fractal features whereas the two di-
mensional projection does not. This projection is isomorphic to hyperbolic or
perplex numbers. Under the quadratic iteration, it is known that hyperbolic
numbers produce a square bound set with a smooth boundary that does not
show fractal features. In section 2, real scator algebra in 1+2 dimensions is re-
viewed. The quadratic iteration with this number system is presented in section
3. The divergent magnitude surfaces present in the vicinity of periodic points
is established in subsection 3.1. The dual numbers limit and 2D projections in
the s, x plane are presented in section 4.

2. Hyperbolic scators

Real scator elements in 1+2 dimensions can be written in terms of three real
numbers

o
ϕ = (F0; F1, F2) , Fj ∈ R.

The first component stands on a different footing from the rest. To stress this
fact, it is separated by a semi-colon from the other components. It is labeled
with subindex zero and named the scalar component. Subsequent components,
separated by commas, stand on an equal footing. They are named the director
components because, as we shall see, they possess a direction. Scator elements
are represented with an oval placed overhead1. The addition operation for

scators
o
α,

o

β is defined component-wise

o
α +

o

β ≡ (A0; A1, A2) + (B0; B1, B2) = (A0 + B0; A1 + B1, A2 + B2) .

The scator set forms a commutative group under the addition operation. The

product operation for scators,
o
α = (A0; A1, A2) and

o

β = (B0; B1, B2) is defined

by
o
γ =

o
α

o

β ≡ (G0; G1, G2), where the scalar component of the product is

G0 = A0B0 + A1B1 + A2B2 +
A1B1A2B2

A0B0

(2.1a)

and the director components of the product are

G1 = B0A1 + A0B1 +
A1A2B2

A0

+
A2B1B2

B0

, (2.1b)

1\overset{o} in LATEX lore
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G2 = B0A2 + A0B2 +
A1A2B1

A0

+
A1B1B2

B0

. (2.1c)

In order to have a product without divergent components, it is necessary that
the scalar components of the factors are different from zero if two or more
director components are different from zero. The subspace E2

+ ⊂ R3, where the
product components are finite is

(

E
2
+, ·

)

=

{

o
α,

o

β ∈ E
2
+ : A0, B0 6= 0 if A1B1, A2B2 6= 0

}

. (2.2)

The plus subindex in E2
+ recalls that the product of a single director component

times itself is equal to +1; The superindex plus one is equal to the number of
dimensions. The set that includes points at infinity, following the extended com-
plex plane notation, is labeled as Ē2

+. Hyperbolic 1+2 dimensional scators form
a commutative group under the product operation provided that non invertible
elements and divisors of zero are excluded [10]. The subspace E2

+g, where the
product forms a commutative group is

(

E
2
+g, ·

)

=

{

o
α,

o

β ∈
(

E
2
+, ·

)

:
o
α,

o

β 6= 0, A0 6= Ak, B0 6= Bk,
AkBk

A0B0

6= −1, k = 1, 2

}

.

(2.3)

The square of a scator is obtained from the product definition (2.1a)-(2.1c)

between two equal scators
o

β =
o
α. Let A0 = B0 = s, A1 = B1 = x and A2 =

B2 = y. The square of the scator
o
α = (s; x, y) is then

o
γ =

o
α

2

= (G0; G1, G2)
with

G0 = s2 + x2 + y2 +
x2y2

s2
(2.4a)

and the director components of the product are

G1 = 2sx +
2xy2

s
= 2x

(

s +
y2

s

)

(2.4b)

G2 = 2sy +
2yx2

s
= 2y

(

s +
x2

s

)

. (2.4c)

The square of the magnitude of a scator
∥

∥

∥

o
ϕ

∥

∥

∥

2

for a scator
o
ϕ = (F0; F1, F2) is

defined by the product of a scator times its conjugate

∥

∥

∥

o
ϕ

∥

∥

∥

2

=
o
ϕ

o
ϕ

∗
=

(

F 2
0 − F 2

1 − F 2
2 +

F 2
1 F 2

2

F 2
0

; 0, 0

)

, (2.5)

where the scator conjugate is
o
ϕ

∗
= (F0; −F1, −F2). If condition (2.3) is fulfilled,

the scator product of the norm is equal to the norm of the scator products. The
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scator norm product identity can be used to derive Lagrange’s identity as well
as other series identities [8]. The subspace E2

+ where the product components
are finite, from (2.2), requires that s 6= 0 if x 6= 0 and y 6= 0. If s becomes
very small while x, y are both different from zero, the magnitude of the scator
becomes very large. There is a set of points on the x, y plane, in the vicinity of
s = 0, whose magnitude approaches infinity

Rs =
{

(s; x, y) ∈ Ē
2
+ : x 6= 0, y 6= 0, ‖(s; x, y)‖ −→

s→0
∞

}

. (2.6)

This set is depicted in figure 1.

Figure 1: Fixed point at the origin 0 = (0; 0, 0) and divergent magnitude plane
(in gray) that covers the x, y plane except for the lines at x = 0 and y = 0. The
darker cross in the x, y plane, whose length is ±1/4 in either axes, depicts the
bound points on this plane under the quadratic iteration.

Therefore, the only points within the x, y plane that can be (but are not neces-
sarily) bounded for s = 0 are those lying on the axis lines x = 0 or y = 0. We
discuss this case in section 4.1.

Divisors of zero for invertible elements are obtained if the equalities A1B1 =
−A0B0 and A2B2 = −A0B0 are fulfilled. For the square function (2.4a)-(2.4c),
these conditions are never met, since for two identical scators, they imply that
x2 = −s2 and y2 = −s2. However, since s, x, y are real, the condition is never
attained. There are therefore no nilpotent elements in real scator algebra under
the square operation.

The square of an invertible element is also an invertible element. To prove it,

consider an arbitrary invertible element, that is, an element
o
α = (A0; A1, A2)

4



where A0 6= Aj for j = 1, 2 . The quotient of the director over scalar for the
square operation is

Gj

G0

=
2

Aj

A0

1 +
(

Aj

A0

)2
.

If any of these two components is non-invertible, the quotient should be one,

i.e.
Gj

G0

= 1. Then 1 +
(

Aj

A0

)2

= 2
Aj

A0

, that is
(

Aj

A0

− 1
)2

= 0. However, this

condition can only be met if A0 = Aj but this equality contradicts the premise
that the initial scator is invertible. The scalar component G0 resultant from the
square operation (2.4a), is always different from zero for any non-zero scator.

Under these conditions, preimages O−
(

o
ϕ0

)

can be obtained. For the square

operation, the only non associative elements come from non invertible elements,
that is, with x2 = s2 or y2 = s2. These elements lie on lines passing through
the origin with ±π/4 slope. In this case, inverse orbits cannot be obtained.

3. Iterated quadratic mapping

The family of quadratic maps Pc : z 7→ z2 + c from Ē2
+ to Ē2

+ is given by

o
ϕ =

o
ϕ

2

0 +
o
c,

where the variable
o
ϕ and the constant

o
c are now scator elements. The iterated

function satisfies the recurrence relationship

o
ϕn+1 =

o
ϕ

2

n +
o
c,

where the subindex stands for the iteration number. The Mandelbrot like set
is obtained by fixing the initial point

o
ϕ0= (0; 0, 0) and varying the parameter

o
c. Bounded points obtained with this procedure comprise the corresponding
M-set in E2

+. There are an arbitrary number of intersections of the plane with a
volume depending on the position and inclination of the plane. Therefore, there
are infinitely many slices of the M-like set in E2

+ compared with the unique
set obtained in C. The confined iteration notation is used to allow for some
orientation in several dimensions:

• c2i confined {2}quadratic iterations, (can be generalized to cpi for a pth

power polynomial or p→ func for other function’s mappings)

• followed by 0 if the initial value of the variable is set to zero as it happens
in parameter space

• followed by the number set: R real, C complex, H hyperbolic, E
n
+ real

scator (in 1+n dimensions), etc.

5



• followed, if required, by the plane (D0; D1, D2) that is being depicted.

According to this notation, the Mandelbrot set in the complex plane is labeled
as the c2i0C set. It is not necessary to show explicitly the plane that is being
depicted since it is inevitably the complex plane.

Figure 2: Three dimensional rendering of the c2i0E2
+(s; x, y) set viewed from

the first director component, x axis. The abscissa corresponds to the real or
scalar s axis (−2.0 < s < 0.5), while the ordinate depicts the second director
component, y axis (−1.2 < y < 1.2). The x axis, comming out of the page,
was scanned in the interval −0.97 < x < 1.79. 13 iterations per point were
performed.

The M-like set for real scators in 1+2 dimensions, labeled according to the
confined iteration notation as c2i0E2

+ is given by

c2i0E2
+ =

{

o
c ∈ E

2
+ : ∀nεN, ‖P ◦n (0)‖ 9 ∞

}

,

where P :
o
ϕ 7→

o
ϕ

2

+
o
c, P ◦n denotes the n-fold composition P ◦n = P ◦P ◦· · ·◦P of

the function P with itself and the 0 argument in P ◦n (0) means that the function
is initially evaluated at zero. Some remarks are required: i) the initial point
in scator space (0; 0, 0) is equal to the additive neutral 0 ∈ R; ii) The c2i0E2

+

set has been defined by the set of points whose magnitude remains bounded.
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In complex algebra, it does not matter whether this condition is imposed on
the magnitude or the real or imaginary parts. However, for real scators, these
conditions are not equivalent just as it occurs for hyperbolic numbers [13]; iii)
The M-set is often defined by the set of parameters c for which Kc, the Julia
set, is connected [6]. This approach will be deferred until the Kc set is discussed
in a forthcoming communication.

In order to evaluate the points in the set numerically, it is more appropriate to
cast the divergence condition in terms of an upper bound b

c2i0E2
+ =

{

o
c ∈ E

2
+ : ∀nεN, ∃bεR, ‖P ◦n (0)‖2 ≤ b

}

. (3.1)

In real scator algebra, the magnitude squared is not positive definite. It is
therefore necessary to perform the upper bound evaluation with the magnitude
squared. For a different reason, namely, in order to avoid evaluating a CPU
time consuming square root, it is customary to work with the square of the
magnitude in the numerical code.

This set is no longer in two dimensions but in a three dimensional space. In figure
2, the image of a three dimensional rendering of the c2i0E2

+ set is shown. This
and subsequent three dimensional image representations were produced with P.
Willenius rendering program [15, v.2.0.1]. The number of points is 1.805 × 109,
(s = 1900) × (x = 1900) × (y = 500). Thirteen iterations are performed on each
point. From these 1805 Mvoxels, only the points in the boundary are drawn.
The colouring is due to the value of the components in the last iteration, the
scalar, x and y directors values proportional to red, green and blue respectively
(s13 {red}; x13 {green}, y13 {blue}). There is a bulge that looks smoother than
the rest, spanning from 0 to 0.25 in the scalar axis (extreme right in figure
2). The confined set is squeezed at s = 0 where the bulge meets the complex
structure on the left. The lack of bound points in the vicinity of the s = 0
plane is due to the set of repelling points Rs described in (2.6). The rendering
suggests a series of onion like skins sewn at rather complex rims. Some of them
resemble cardioid shapes while others do not seem to produce closed shapes.
On the far left, there is a hint of a self-similar smaller version of the larger set.
The entire fractal is inscribed in a diamond like shape, that as we shall see,
corresponds to the two dimensional projection.
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s = 0

MF 

s = -1.769...

}
}

}
1st elementary fractal component 

2nd efc 

3rd efc 

s = 1/4}
1st elementary fractal 

2nd ef 

s = -1

s = -1.3107...

Figure 3: Three dimensional rendering of the c2i0E2
+(s; x, y) set viewed from

the first director component, x axis. 91 iterations per point were performed.
The abscissa represents the real or scalar s axis, while the ordinate depicts the
second director component, y axis.

The c2i0E2
+ set is drawn again in figure 3. However, the number of iterations

for each point has been increased ninefold from 13 (in figure 2) to 91. Since the
bound set is defined for points where the magnitude remains bounded for an
infinite number of iterations, it is expected that this latter rendering should be
much closer to the actual set. This is true to some extent but it can be deceiving.
Some regions in the set are extremely thin. When a few iterations are evaluated,
these regions are partially ’caught’ within the bound criterion. However, as the
number of iterations increases, if the mesh points do not intersect with the thin
bound regions they become lost. To retain them, a much finer mesh is required
with the concomitant increase in the number of operations. To grasp some of
the finer details an incredibly thin mesh will be required. A possibility in order
to visualize these features is to have a variable thickness evaluation mesh and
to introduce transparency for very thin features.
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To describe the main features of the 3D set, let us borrow the concept of ’unit
cell’ or ’elementary cell’ from crystallography. The simplest repeating atomic
distribution or structure in a crystal is called a unit cell or elementary cell.

elementary fractal Any of the subsets that contains the whole fractal struc-
ture that is repeated.

nth elementary fractal The nth elementary fractal counted from large to
small. The largest elementary fractal is labeled 1st, the second largest
2nd, etc.

In figure 3, the first elementary fractal (1st ef) spans from (s, x, y) roughly equal
to (−1.401 to 0.25, ±1.125, ±1.125). The second elementary fractal can just be
resolved in this figure and is located around (−1.769, 0, 0). Several other order
elementary fractals have been observed along the negative s axis between -2 and
-1.401. In crystallography, the elementary cell repeats with the same size and
orientation producing a lattice. In three dimensional fractals, the elementary
fractal is repeated with the same shape but not necessarily with the same size
nor orientation. In other words, the fractal lattice changes size and orientation.
Furthermore, it need not be densely packed.

elementary fractal component A subset of the elementary fractal that is
repeated within such structure. They are numbered from large to small.

There is an elementary fractal component contained within the volume given
by (−1 to 0, ±1.125, ±1.125). The first elementary fractal winged component
(1st efwc). A second efwc is roughly located within (−1.3 to − 1, ±0.3, ±0.3).
These efwc are likely to be related to period doubling regions. This period
doubling cascade seems to converge to the Myrberg-Feigenbaum (MF) point.

For
o
c = (s; x, y), the quadratic iteration recurrence relationship

o
ϕn+1 =

o
ϕ

2

n +
o
c

for the scalar component is

sn+1 = s2
n + x2

n + y2
n +

x2
ny2

n

s2
n

+ s (3.2a)

and for the director components, the recurrence relationships are

xn+1 = 2snxn +
2xny2

n

sn

+ x, (3.2b)

yn+1 = 2snyn +
2ynx2

n

sn

+ y. (3.2c)

Interchange of the x and y variables exchange the recurrence relationships for
the director components. Thus, there should be symmetry with respect to the
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(a) View from −s axis. (b) View from −π/4 in (s, x) plane.

(c) View from π/4 in (s, x) plane. (d) View from +s axis. The x direction
lies in the abscissa.

Figure 4: Different views of the c2i0E2
+ set seen from the (s, x) plane. The

ordinates correspond to the y direction in all figures.

±π/4 axes in the x, y plane. This symmetry is clearly seen in figures 4a and 4d
where the c2i0E2

+ set is seen from the −s and +s axes respectively.

In parameter space the initial point is
o
ϕ0 = (0; 0, 0). The first iteration gives

the iteration constant
o
ϕ1 =

o
c = (s; x, y), The second iteration for the scalar is

s2 = s2 + x2 + y2 +
x2y2

s2
+ s (3.3a)

and for the director components are

x2 = 2x

(

s +
y2

s
+

1

2

)

(3.3b)

y2 = 2y

(

s +
x2

s
+

1

2

)

. (3.3c)
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The x director component is an odd function of x, thus upon iteration, the
function will be equal but with opposite sign under the transformation x → −x.

The bound criterion
∥

∥

∥

o
ϕ

∥

∥

∥

2

=
(

s2 − x2 − y2 + x2y2

s2 ; 0, 0
)

is even under inversion

of any of the axes. Therefore, the confined set and the escape velocity iso-
surfaces must be symmetric about the ordinate axis. An equivalent reasoning
leads to y → −y symmetry about the abscissas. The symmetry between the
upper and lower half in figure 4 exhibits this ±y symmetry. Renderings of
rotations about the s axis (not shown here) also confirm the ±x symmetry. The
bound set is asymmetrical with respect to the scalar (or real) s axis. Indeed,
from the above expression, the transformation s → −s does not have a well

defined parity for the resultant scalar term s2 + x2 + y2 + x2y2

s2 + s. Thus, the
iterated map will not be equal under inversion of the scalar axis.

3.1. Divergent magnitude surface in the vicinity of periodic points

Due to s terms in the denominators, all three components in iteration (3.3a)-
(3.3c) become large for nonzero director components if the scalar becomes small.
In a first approximation, allow for x, y to be small in the scalar component

second iteration s2, so that the term x2y2

s2 can be neglected; Impose the condition
s2 → 0, so that the scalar term will produce a very large scator in the third
iteration. The equation for s2 in terms of the initial values is approximately
s2 + x2 + y2 + s = 0. Notice that the s terms can be collected as s2 + s =
(

s + 1

2

)2 − 1

4
. The equation is then

(

s + 1

2

)2
+ x2 + y2 = 1

4
, that is a sphere of

radius 1

2
centered at

(

− 1

2
; 0, 0

)

. This sphere crosses the scalar axis at 0 and -1.
Therefore, we expect to have an unbounded region in the vicinity of s = −1,
as it is indeed observed in figure 3. Nonetheless, there is a period two fixed
point at −1 with its concomitant basin of attraction. So there is an attractive
point surrounded by divergent points on a plane. The surface generated by the

second iteration without approximations is s2 + x2 + y2 + x2y2

s2 + s = 0, it is a
slightly deformed sphere as shown in figure 5. This refinement does not alter
significantly the argument that has been presented. We previously found a set
of large magnitude points Rs in the vicinity of s = 0. We have now found that
there is also a divergent magnitude surface crossing the s axis at s = −1. Let
us generalize this result.

Lemma 1. For every periodic point P ◦n on the scalar axis, there is a divergent
vicinity

Rsn
=

{

(s; x, y) ∈ E
2
+ : xn 6= 0, yn 6= 0, sn → 0

}

.

Proof. A divergent magnitude is obtained when the scalar component of the

nth iteration scator is zero, that is, sn = 1

2

(

o
ϕn +

o
ϕ

∗

n

)

= 0 . Thus
∥

∥

∥

o
ϕn

∥

∥

∥
=

s2
n − x2

n − y2
n +

x2

ny2

n

s2
n

→ ∞ if sn (s, x, y) → 0 with xn, yn 6= 0. Notice that if

the director components are not zero after n iterations, they are necessarily non

zero for the initial constant value
o
c = (s; x, y), that is xn, yn 6= 0 ⇒ x, y 6= 0.
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(a) 3D rendering

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.2
s

-0.4

-0.2

0.2

0.4

x

(b) Constant y curves for y = 0 (cir-
cle radius 1/2 centered at −1/2), y =
0.1, 0.2, 0.3, 0.4 and 0.4987 (tiny curve
centered at −1/2)

Figure 5: Plot of equation s2 + x2 + y2 + x2y2

s2 + s = 0. Along this surface, the
scalar component in the second iteration is zero s2 = 0. The scator magnitude
diverges on this surface except at the planes x = 0 and y = 0. There is a period
2 point at (−1; 0, 0) and the fixed point at the origin.

Periodic points require that
o
ϕn = 0, that is, the point represented by the scator

o
ϕ returns to zero after n iterations. Since x, y are zero on the scalar axis,
o
ϕn = (sn; 0, 0) = 0. But a scator with zero director components is equal to
a scalar, i.e. (sn; 0, 0) = sn. Furthermore, on the scalar axis, sn is only a
function of s, namely sn (s, 0, 0) = 0. But this periodic point condition on the
scalar axis is equal to the divergent magnitude condition if xn = yn = 0. Thus
the divergent magnitude surface has a periodic point whenever it intersects the
scalar axis.

The iterations on the scalar or real axis commence with the constant
o
c = (s; 0, 0).

From (2.4a)-(2.4c), the square of a scator with zero director components is
a scator whose only non-vanishing component is again the scalar component.
Recall also, that addition is defined component-wise. Thus the iteration of a
scalar quantity remains a scalar. In this particular case, the zeros in the director
components (s; 0, 0) can be dropped and only the real number s need be written
down. The real roots of the corresponding polynomials establish the periodic
points after n iterations, see table 1 for the first few roots. There are basins
of attraction in the vicinity of these attractive periodic points in the complex
plane. We assume without proof, that there are also basins of attraction in the
real scator space. This assumption is consistent with the numerical evaluation
that exhibits smaller 3D copies of the set at the roots of the polynomial in the
negative real axis (see figures 2 and 3).
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point
period

periodic points on scalar

axis
o
ϕn = 0

real root divergent scator
magnitude sn = 0

initial
value

x, y = 0 x, y 6= 0

fixed
o
ϕ1 = s s = 0 s1 = s

2
o
ϕ2 = s2 + s s = −1 s2 = s2 +x2 +y2 + x2y2

s2 +s

3
o
ϕ3 =

(

s2 + s
)2

+ s s = −1.7549 s3 = s2
2 +x2

2 +y2
2 +

x2

2
y2

2

s2

2

+s

4
o
ϕ4 =

(

(

s2 + s
)2

+ s
)2

+ s s = −1.3107
...

Table 1: Attractive periodic points on scalar axis and divergent magnitude
surfaces due to scalar component equal to zero.

On the other hand, points in the vicinity of the divergent magnitude surface with
sn ≪ xn, yn, will have a large magnitude and will fail to fulfill the upper bound
criterion (3.1). Furthermore, all three components in the n + 1 iteration (3.2a)-
(3.2c) become large for nonzero director components if the sn scalar becomes
small. Imposing the condition that the scalar component becomes zero in the
nth iteration, produces a divergent result for all three components in the next
iteration if xn+1, yn+1 6= 0. In contrast with what we stated before, in this
case, the large magnitude condition is equivalent to the large scalar component
condition.

The basin of attraction of periodic points on the scalar axis becomes squeezed
in the x, y plane at the periodic point. This is indeed what is observed in figure
3. The roots at 0, -1, -1.3107 clearly exhibit a waist.

The basin of attraction of periodic orbits of maps on the real line has only
recently been addressed. There are no globally attractive periodic orbits of
continuous maps on connected metric spaces. In contrast, fixed points can be
globally attractive [7]. It will be interesting to attempt extending the dynamics
in the neighborhood of a periodic point to higher dimensions such as three
dimensional scators. In particular, the notions of attracting and repelling orbits.

The extended complex plane is homeomorphic to the two-dimensional sphere
S2 =

{

(x1, x2, x3) ∈ R3|x2
1 + x2

2 + x2
3 = 1

}

. Infinity in C̄ is then mapped onto
a single point at the sphere pole x2

3 = 1. The point at infinity can then be
thought as a superattractive fixed point [4]. Whether it is possible to produce
a homeomorphism of Ē2

+ with a three-dimensional sphere is an open problem.
Nonetheless, the scator divergent magnitude surfaces can be thought as a su-
perattractive surface at infinity.
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4. Sections of the c2i0E2
+

set in the s, x plane

4.1. Quadratic iteration with hyperbolic numbers

In 1+1 dimensions, positive or real scator algebra becomes identical to hyper-
bolic numbers algebra H as may be readily seen from the product definition
(2.1a)-(2.1c) with any of the two director components with subindex 1 or 2
equal to zero. Furthermore, distributivity of the product over addition is recov-
ered. Since hyperbolic numbers are equivalent to scators with only one director
component H → E1

+, the sets c2i0H and c2i0E1
+ are equal. The quadratic iter-

ation with hyperbolic numbers gives rise to a square centered at − 7

8
with sides

equal to 9

4
√

2
[14]. The square diagonals (with 9

4
length) lie parallel to the real

and hypercomplex axes. If the bound criterion for a hyperbolic number a + b ê,
(ê · ê = 1, ê /∈ R) is a2 ≤ ε and b2 ≤ ε, the bound set is equal to a square [12].
This set is the counterpart of the Mandelbrot set for complex numbers but in
two dimensional hyperbolic geometry [2]. The boundary for the hyperbolic set,
is made up of four straight lines void of the complexity shown by the M-set.
There are neither small-copies of the set nor a structure within the bound region
as can be seen in the first inset of figure 6. Thus, the rich fractal 3D structure
is lost when it is projected into 2D.

The iteration on the real positive axis is bound from 0 to 1/4. The iteration
on the director axes for s = 0 is then also bound from 0 to 1/4 since the sides
of the square bound set are rotated at π/4. Since the mapping is symmetric
with respect to the director axes it must be bound from −1/4 to 1/4. A similar
argument follows for the other director axis. So the points located within a
cross centered at the origin of the x, y plane at s = 0 with 1/4 length per arm
produce bound iterations. The quadratic iterated function of any other point
in the s = 0 plane diverges as shown in figure 1.

4.2. The s, x plane

A rich fractal like structure is revealed if the second director component is set
to small value different from zero. Evaluation at hypercomplex plane y = 10−20

already exhibits a complex structure [9, submitted]. In a sequence, depicted
in figure 6, we show sets from c2i0E2

+(s; x, 0) to c2i0E2
+(s; y, 0.8) in steps of

△y = 0.1. Points are evaluated starting at
o
ϕ0= (0; 0, 0) and

o
c = (s; x, y),

s is scanned in the ±2.0 interval centered at −1.0 while x is centered at 0.
The bounded region becomes smaller and departs form the diamond-like shape
moving towards a bird-like form as the y hyperplane is increased. The set is
always squeezed in the forefront to the right in the plane where s = 0 if y 6= 0.
Furthermore, the escape velocity in the s = 0 plane is very large (lighter blue)
as may be seen in the insets of figure 6. This plane is enlarged as the y plane is
further away from the origin. This is the expected behaviour due to the large
magnitude set Rs described in (2.6) encountered in the vicinity of the s = 0
plane. A large escape velocity (light blue) circle with radius approximately 1/2
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2.
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0.

-1.
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Figure 6: Slices of the bound quadratic iteration c2i0E2
+(s; x, y) set with y

hyper-axis between 0 and 0.8 in 0.1 steps. The abscissa s is scanned in the ±2.0
interval centered at −1.0 whereas the ordinate x is scanned in the same interval
but centered at the origin.

centered around s = −1/2 can be clearly seen in the insets y = 0.1 and 0.2
of figure 6. These large iso-escape velocities correspond to the second iteration
divergent magnitude surface. The level curves plotted in figure (5b) can be
followed in the insets 0.1 to 0.4 of figure 6. At y = 0.5, the second iteration
divergent magnitude surface just touches the plane at only one point and is no
longer present for y > 0.5.

So far, we have described squeezing of the set at the periodic points on the
scalar axis. The Rs2

surface also prevents points to be bounded off axis. The
bound set is squeezed when it meets the rim of the Rs2

surface. See for example
the thin attachment of the wings to the main body in insets 0.1 to 0.4 of figure
6. The Rs2

surface repels points that approach it, since the n + 1 iteration will
have very large values for all three components.
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The s3 = 0 polynomial is already rather lengthy to write down in terms of the

initial
o
c = (s; x, y) values. Its roots are analytically solvable although they are

even lengthier. However, the intersection of this surface with the y = 0 plane is
quite tractable. From table (1),

s3 = s2
2 + x2

2 + s,

because y = 0 ⇒ y2 = 0. Substitution of s2 and x2 from (3.3a) and (3.3b)
respectively gives

s3 =
(

s2 + x2 + s
)2

+ 4x2

(

s +
1

2

)2

+ s = 0.

The real solutions for x are

x = ±

√√
32s4 + 64s3 + 44s2 + 8s + 1 − (6s2 + 6s + 1)

√
2

,

this function is plotted in figure 7. The magnitude squared for a scator in the

-2.0 -1.5 -1.0 -0.5 0.5
s

-1.0

-0.5

0.5

1.0
x

Figure 7: Intersection of the s3 = 0 and s2 = 0 (circle) surfaces with the y = 0
plane.

third iteration is
∥

∥

∥

o
ϕ3

∥

∥

∥

2

= s2
3 − x2

3 − y2
3 +

x2
3y2

3

s2
3

.

Since y = 0 ⇒ y3 = 0, then
∥

∥

∥

o
ϕ3

∥

∥

∥

2

= s2
3 − x2

3 and for points on the intersection

with the surface s3 = 0
∥

∥

∥

o
ϕ3

∥

∥

∥

2

= −x2
3 = − (2s2x2 + x)2 = −

(

2x
(

s2 + x2 + s
)

(2s + 1) + x
)2

,

where we have used the iteration relationship (3.2b). This magnitude is certainly
finite in the interval ±2 in either variable. However, as soon as y 6= 0, the
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magnitude becomes divergent. The curve shape is not altered significantly for
very small values of y. Just as in the s2 = 0 condition, small departures from y =
0 yield similar curves, as observed in figure 5b. There is a high escape velocity
(light blue) contour of the form given by the s3 = 0 polynomial (depicted in
figure 7) in inset 0.1 of figure 6. Again, at approximately s = −0.9, x = ±0.9
the confined set is squeezed due to the presence of the third iteration divergent
magnitude surface.

The out-most bound point must be located at y = 9

8
= 1.125 where the upper

tip of the diamond is located. Recall that there must be a diamond-like shape
in the perpendicular s, y plane identical to the one shown in the first s, x inset.
This feature is no longer visible even at smaller values of the y planes because
the tip becomes very thin and is difficult to see at this magnification. From
previous estimates [9], the tip is approximately 10−7 thick between 1.0 and
1.125.

5. Conclusions

The quadratic iteration in three dimensional real scator space E2
+ exhibits a

rich boundary structure with complex dynamics. The extended set including
points at infinity Ē

2
+ has been introduced. This set, beside the usual points

whose components tend to infinity, also contains scator elements with null scalar
and finite director components. That is, the scator norm contains a plane Rs

where the magnitude diverges. The E2
+ scator algebra is not distributive and

contains divisors of zero as well as non-invertible elements. The algebra forms a
commutative group if divisors of zero and non invertible elements are excluded.
The confined iteration notation c2i0E2

+(s; x, y) seems at present rather clumsy.
However, we believe that it will prove very useful as the scator set is extended
to higher dimensions and diverse mappings. The c2i0E2

+(s; x, y) set has been
defined in parameter space in terms of bounded iterations. Some features of the
3D set have been described, such as the self similarity of the elementary fractal
as well as elementary fractal components. The position of self similar smaller
copies has been discussed elsewhere [9]. The main set spatial symmetries have
been discussed. The existence of divergent magnitude surfaces in the vicinity of
periodic points on the scalar axis has been proved. Squeezing of the set at the
divergent magnitude surfaces has been noted, both on and off the scalar axis.
Flat images of the three dimensional rendering of this set have been rendered
with the open source program developed by P. Willenius [15]. We have shown
that increasing the number of iterations gives a closer fidelity to the actual set
boundary but some features are lost. In particular very thin surfaces are no
longer rendered. A possibility in order to visualize these features is to have a
variable thickness evaluation mesh and to introduce transparency for very thin
features. New algorithms will certainly be required to visualize the intricacies
of these higher dimensional sets. Two dimensional renderings also prove useful
to understand the dynamics. In particular, they have been utile here in order to
assess escape velocities that are related to the Rsn

divergent magnitude surfaces.
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