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Abstract

The quadratic iteration is mapped using a non distributive real scator
algebra in three dimensions. The bound set has a rich fractal like bound-
ary. However, the two dimensional (1+1) projection becomes identical to
the quadratic iteration produced with hyperbolic numbers. The quadratic
iteration with hyperbolic numbers does not produce a fractal structure.

The hyperbolic numbers square bound set reveals a rich structure when
taken into the three dimensional hyperbolic scator space. Self similar small
copies of the larger set are obtained along the real axis. Furthermore,
these small copies are self similar 3D copies of the larger 3D bound set.
The real roots of the respective polynomials exhibit basins of attraction
in a three dimensional space. Slices of the 3D confined scator set, labeled
c2i0E2(s;x, y), are shown at different planes to give an approximate idea
of the 3D object highly complicated boundary.

Keywords: Fractals; Hyper-complex numbers; 3D hyperbolic numbers; Real
scators; Quadratic iteration; Mandelbrot set.

1 Introduction

Two dimensional fractal structures have often been extended to higher dimen-
sions. For example: Sierpinski triangles are extended to three dimensional tetra-
hedrons that produce square based pyramids; Sphere inversion fractals as a gen-
eralization of circle inversion [?]; Mandelbrot, Mandelbox and several other ap-
proaches to generalizations of fractals in the complex plane to three dimensions,
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etc. However, the generalization does not always produce a three dimensional
fractal structure. For example, quaternion quadratic iterations in parameter
space produce solids of revolution with an M-set section.

On the other hand, it is not common practice to proceed the other way around.
Namely, to produce a three dimensional fractal structure and thereafter to ob-
tain two dimensional projections of these objects. Nonetheless, it will be the
procedure followed here. Namely, we will propose an algebra that produces a
three dimensional fractal structure. The product in this scator algebra is not
distributive over addition. Furthermore, not all elements are invertible and the
product is associative only if divisors of zero are excluded.

It thus comes as a surprise that a two dimensional non fractal structure is
generalized to a three dimensional fractal structure.

2 Hyperbolic scators

Real scator elements in 1+2 dimensions can be written in terms of three real
numbers

o
ϕ= (F0;F1, F2) , Fj ∈ R.

The first component stands on a different footing from the rest. To stress this
fact, it is separated by a semi-colon from the other components. It is labeled
with subindex zero and named the scalar component. Subsequent components,
separated by commas, stand on an equal footing. They are named the director
components because, as we shall see, they possess a direction. Scator elements
are represented with an oval placed overhead1. The addition operation for
scators o

α,
o

β is defined component-wise

o
α +

o

β ≡ (A0;A1, A2) + (B0;B1, B2) = (A0 +B0;A1 +B1, A2 +B2) .

The scator set forms a commutative group under the addition operation. The
product operation for scators, o

α = (A0;A1, A2) and
o

β = (B0;B1, B2) is defined
by o

γ = o
α

o

β = (G0;G1, G2), where the scalar component of the product is

G0 = A0B0 +A1B1 +A2B2 + A1B1A2B2

A0B0
(2.1a)

and the director components of the product are

G1 = B0A1 +A0B1 + A1A2B2

A0
+ A2B1B2

B0
, (2.1b)

1\overset{o} in LATEX lore
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G2 = B0A2 +A0B2 + A1A2B1

A0
+ A1B1B2

B0
. (2.1c)

In order to have a well defined product, it is necessary that the scalar compo-
nents are different from zero if two or more director components are different
from zero. The subspace space E2 ⊆ R3, where the product is well defined is(

E2, ·
)

=
{

o
α,

o

β ∈ E2 : A0, B0 6= 0 if A1B1, A2B2 6= 0
}
. (2.2)

Hyperbolic 1+2 dimensional scators form a commutative group under the prod-
uct operation provided that non invertible elements and divisors of zero are
excluded. The subspace E2

g where the product forms a commutative group is

(
E2

g, ·
)

=
{

o
α,

o

β ∈
(
E2, ·

)
: o
α,

o

β 6= 0, A0 6= Ak, B0 6= Bk,
AkBk

A0B0
6= −1, k = 1, 2

}
.

(2.3)
The square of a scator is obtained from the product definition (2.1a)-(2.1c)
between two equal scators

o

β = o
α. Let A0 = B0 = s, A1 = B1 = x and A2 =

B2 = y. The square of the scator o
α = (s;x, y) is then o

γ = o
α

2
= (G0;G1, G2)

with

G0 = s2 + x2 + y2 + x2y2

s2 (2.4a)

and the director components of the product are

G1 = 2sx+ 2xy2

s
= 2x

(
s+ y2

s

)
(2.4b)

G2 = 2sy + 2yx2

s
= 2y

(
s+ x2

s

)
. (2.4c)

The square of the magnitude of a scator
∥∥∥ o
ϕ
∥∥∥2

for a scator o
ϕ = (F0;F1, F2) is

defined by ∥∥∥ o
ϕ
∥∥∥2

= o
ϕ

o
ϕ
∗

=
(
F 2

0 − F 2
1 − F 2

2 + F 2
1F

2
2

F 2
0

; 0, 0
)
. (2.5)

The subspace E2 where the product is well defined, from (2.2), requires that
s 6= 0 if x 6= 0 and y 6= 0. If s becomes very small while x, y are finite, the
magnitude of the scator becomes very large. Therefore, no points will be bound
in the plane x, y in the vicinity of s = 0. Repelling points on the plane.
The only points within the x, y plane that can be (but are not necessarily)
confined for s = 0 are the lines for x = 0 or y = 0. If x = 0, o

α = (s; 0, y)
o
γ = o

α
2

=
(
s2 + y2; 0, 2sy

)
3



and the iteration is
o
ϕ2= o

α
2

+ o
α =

(
s2 + y2 + s; 0, 2sy + y

)
The limit when s→ 0, can now be taken and gives

o
γ =

(
y2; 0, 0

)
this has to be discussed in iteration: furthermore, iterations

o
ϕ0 = (0; 0, 0)
o
ϕ1 = (0; 0, y)
o
ϕ2 =

(
y2; 0, y

)
o
ϕ3 =

(
y4 + y2; 0, 2y3 + y

)
o
ϕ4 =

((
y4 + y2)2 +

(
2y3 + y

)2 ; 0, 2
(
y4 + y2) (2y3 + y

)
+ y
)

...

and the scator magnitudes for each iteration are∥∥∥ o
ϕ0

∥∥∥ = (0; 0, 0)∥∥∥ o
ϕ1

∥∥∥ =
(
y2; 0, 0

)
∥∥∥ o
ϕ2

∥∥∥ =
(
y4 − y2; 0, 0

)
∥∥∥ o
ϕ3

∥∥∥ =
((
y4 + y2)2 −

(
2y3 + y

)2 ; 0, 0
)

∥∥∥ o
ϕ4

∥∥∥ =
(((

y4 + y2)2 +
(
2y3 + y

)2
)2
−
(
2
(
y4 + y2) (2y3 + y

)
+ y
)2 ; 0, 0

)
...

If the magnitudes of the scalar part Sc
{

o
ϕ
}

= 1
2

(
o
ϕ+ o

ϕ
∗)

, are considered sep-

arately,
∥∥∥S { o

ϕ
}∥∥∥2

= 1
4

(
o
ϕ+ o

ϕ
∗)2

=
(
F 2

0 ; 0, 0
)
, the scalar magnitudes for each
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iteration are ∥∥∥S { o
ϕ0

}∥∥∥ = (0; 0, 0)∥∥∥S { o
ϕ1

}∥∥∥ =
(
y2; 0, 0

)
∥∥∥S { o

ϕ2

}∥∥∥ =
(
y4; 0, 0

)
∥∥∥S { o

ϕ3

}∥∥∥ =
((
y4 + y2)2 ; 0, 0

)
∥∥∥S { o

ϕ4

}∥∥∥ =
(((

y4 + y2)2 +
(
2y3 + y

)2
)2

; 0, 0
)

...

The set should be confined by the vertical line at the origin of the square of the
hyperbolic case. Since the square is rotated π/4, ant the tip from the origin on
the RHS is located at 1

4 . Then, the bound limit should be located at y = 1
4 if

magnitudes are evaluated separately .

o
ϕn+1 =

o
ϕ

2
n + o

c,

with o
c = (cs; 0, cy); in this case o

c = (0; 0, cy)

(sn+1; 0, yn+1) =
(
s2

n + y2
n; 0, 2snyn + cy

)
,

and for the scalar part
sn+1 = s2

n + y2
n

for the director part
yn+1 = 2snyn + cy

test for scalar part:

sn+1 − sn = s2
n − sn + y2

n

the function w2 − w has a minimum at 2w − 1 = 0, that is at 1
2 and the value

at the minimum is
( 1

2
)2 − 1

2 = − 1
4 . Therefore s2

n − sn ≥ − 1
4 .

If we were in the reals and the constant had a term cs, then yn = 0 and
sn+1− sn = s2

n− sn + cs. The value cs = 1
4 + ε gives sn+1− sn = s2

n− sn + cs ≥
− 1

4 + 1
4 + ε, thus sn+1 > sn, the terms increase and the iteration diverges.

test for director part:

yn+1 − yn = (2sn − 1) yn + cy
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evaluate

yn+2 = 2sn+1yn+1+cy = 2sn+1 (2snyn + cy)+cy = 2
(
s2

n + y2
n

)
(2snyn + cy)+cy

then from yn+1 = 2snyn + cy,
yn+1 − cy

2yn
= sn

and if we substitute in

yn+2 = 2
(
s2

n + y2
n

)
(2snyn + cy) + cy

we obtain

yn+2 = 2
((

yn+1 − cy

2yn

)2
+ y2

n

)(
2yn+1 − cy

2yn
yn + cy

)
+ cy

yn+2 = 2
((

yn+1 − cy

2yn

)2
+ y2

n

)
(yn+1) + cy

yn+2 = 2
((

y2
n+1 + c2

y − 2cyyn+1

4y2
n

)
+ y2

n

)
(yn+1) + cy

2yn+2y
2
n =

(
y2

n+1 + c2
y − 2cyyn+1 + 4y4

n

)
(yn+1) + 2y2

ncy

2yn+2y
2
n = y3

n+1 + c2
yyn+1 − 2cyy

2
n+1 + 4y4

nyn+1 + 2y2
ncy

...
Divisors of zero for non invertible elements are obtained if the equalities A1B1 =
−A0B0 and A2B2 = −A0B0 are fulfilled. For the quadratic mapping, these con-
ditions are never met, since for two identical scators, they imply that x2 = −s2

and y2 = −s2. However, since s, x, y are real, the condition is never attained.
There are therefore no nilpotent elements in real scator algebra under the
quadratic iteration.
On the other hand, consider an invertible element, that is, an element where
s 6= x and s 6= y and y 6= 0. The square of this element is also an invertible
element since G0 in (2.4a) is always different from zero.
The only non associative elements come from non invertible elements with x2 =
s2 or y2 = s2.
Notice that the special relativity metric is recovered for F 2

0 � F 2
1 , F

2
2 if the

scalar component is identified with time and the director components with two
spatial axes. On these grounds, an alternative composition of velocities in a
deformed Lorentz metric has been proposed using real scator algebra [8]. If
condition (2.3) is fulfilled, the scator product of the norm is equal to the norm
of the scator products. This identity permits a generalization of Lagrange’s
identity. Furthermore, the scator norm product identity produces an infinite
number of series identities [9].
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3 Iterated quadratic mapping

The quadratic mapping is given by

o
ϕ=

o
ϕ

2
0 + o

c,

where the variable
o
ϕ and the constant o

c are now scator elements. The iterated
function satisfies the recurrence relationship

o
ϕn+1 =

o
ϕ

2
n + o

c,

where the subindex stands for the iteration number. The Mandelbrot like set
is obtained by fixing the initial point

o
ϕ0= (0; 0, 0) and varying the parameter

o
c. Bounded points obtained with this procedure comprise the corresponding
M-set in E2. There is an arbitrary number of intersections of the plane with a
volume depending on the position and inclination of the plane. Therefore, there
are infinitely many slices of the M-like set in E2 compared with the unique set
obtained in C. The following notation will be used to allow for some orientation
in several dimensions

• c2i confined {2}quadratic iterations, (can be generalized to cpi for a pth

power polynomial or p→ func for other function’s mappings)

• followed by 0 if the initial value of the variable is set to zero as it happens
in parameter space

• followed by the number set: R real, C complex, H hyperbolic, En real
scator (in 1+n dimensions), etc.

• followed, if required, by the plane (D0;D1, D2) that is being depicted.

According to this notation, the Mandelbrot set in the complex plane is labeled
as the c2i0C set. It is not necessary to show explicitly the plane that is being
depicted since it is inevitably the complex plane.
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Figure 1: Image of a three dimensional rendering of the c2i0E2(s;x, y) set
viewed from the second director component y axis. The abscissa corresponds
to the real or scalar s axis while the ordinate corresponds to the first director
component x axis. 12 iterations were used −2.14 < s < 0.62, −1.42 < x < 1.34,
−0.97 < y < 1.79 ,

The M-like set for real scators in 1+2 dimensions, according with the pro-
posed notation, is written as the c2i0E2 set. This c2i0E2 set is no longer
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in two dimensions but in a three dimensional space. In figure 1, a three di-
mensional rendering is shown. This and subsequent three dimensional im-
ages were produced with P. Willenius rendering program [11, v.2.0.1]. The
colouring is due to the value of (s (red);x (green), y (blue)) in the last iteration
(s12 (red);x12 (green), y12 (blue)).

On the other hand, distributivity of the product over addition does not hold.
Consider the second iteration in terms of the initial value

o
ϕ2 =

o
ϕ

2
1 + o

c =
(

o
ϕ

2
1 + o

c

)2
+ o
c =

(
o
ϕ

2
1 + o

c

)(
o
ϕ

2
1 + o

c

)
+ o
c. (3.1)

This scator is not equal to
o
ϕ
′
2 =

o
ϕ

4
1 +2o

c
o
ϕ

2
1 + o

c
2

+ o
c. The numerical procedure

evaluates the scator in each iteration and then proceeds to the next. Therefore,
it produces sequences of the form described by equation (3.1). Notice that for
hyperbolic numbers or scators with a single director component distributivity
holds,

o
ϕ2 (s; 0, y) =

o
ϕ
′
2 (s; 0, y) and either expression yields the same results.

Let us return to figure ??; It is symmetrical with respect to the hypercomplex
ordinate axis êx. Let us confirm that this is the expected result. The first two
iterations starting with

o
ϕ0 = (0; 0, 0) are

o
ϕ1 = o

c and
o
ϕ2 = o

c
2

+ o
c. The scator

number squared plus the scator is

o
ϕ2 = (s2;x2, y2) =

o
ϕ

2
1 +

o
ϕ1 =(

s2 + x2 + y2 + x2y2

s2 + s; 2sx+ 2xy2

s
+ x, 2sy + 2yx2

s
+ y

)
. (3.2)

The resulting êx director component is 2sx+ 2xy2

s +x. This expression is an odd
function of x, thus upon iteration, the function will be equal but with opposite
sign under the transformation x → −x. The bound criterion to establish the
confined set is the squared magnitude

∥∥∥ o
ϕ
∥∥∥2

=
(
s2 − x2 − y2 + x2y2

s2 ; 0, 0
)
. This

function is even under inversion of any of the axes. Therefore, the confined set,
or the escape velocity iso-surfaces must be symmetric about the êx ordinate
axis. An equivalent reasoning leads to symmetry about the êy axis. On the
other hand, the bound set is asymmetrical with respect to the scalar (or real)
s axis. Indeed, from the above expression, the transformation s→ −s does not
have a well defined parity for the resultant scalar term s2 + x2 + y2 + x2y2

s2 + s.
Thus, the iterated map will not be equal under inversion of the scalar axis.

The bound set in figure ?? has an inner square on the right with a roundish
centre. Let us analyze this feature. If the scalar becomes small, all three com-
ponents in iteration (3.2) become large for nonzero director components. Allow
for y to be negligible in the scalar term second iteration; Impose the condi-
tion s2 → 0, so that the scalar term will produce a very large scator on the
third iteration, s2 + x2 + s = 0. Notice that the s terms can be collected as
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s2 +s =
(
s+ 1

2
)2− 1

4 . The equation is then
(
s+ 1

2
)2 +x2 = 1

4 , that is a circle of
radius 1

2 centered at
(
− 1

2 ; 0, 0
)
. Therefore, the roundish rim feature where the

set is unbounded is due to the scalar component becoming very small. It is of
course not strictly a circle because the non-zero second director term has been
neglected. This shape is distorted as the y plane is further away from the origin
as can be seen in figure 6. The roundish centre has two asymmetric triangular
arrows on its sides. The point where the arrow on the right is joined to the
main body is s = 0. The tip of this arrow is located at s = 1

4 as expected from
the real axis bound interval

[
−2, 1

4
]
. The arrow on the left is in fact a sequence

of smaller copies of the main body, a feature that is observed when the itera-
tion limit is increased. The upper and lower symmetric structures blend with a
ragged bound region inscribed in a larger square. The ragged boundary seems
to split into a Fatou dust-like fractal. The scale has been maintained equal to
that of figure 8 to show that the escape velocity contours remain fairly similar
in either case. The coordinates s and x are scanned from −2.2 to 2.2 in both
figures.

In 1+1 dimensions, real scator algebra becomes identical to hyperbolic numbers
algebra as may be readily seen from the product definition with any of the
two director components with subindex 1 or 2 equal to zero. If we label the
axes (F0;F1, F2) by s, ê1 and ê2, either plane s, ê1 or s, ê2 is identical to the
hyperbolic number’s plane.
Thus, the filled in Julia set in the complex plane Kc for the point z = a+ ib is
the c2i(a, b)C set. The Kc set for hyperbolic numbers is c2i(a, b)H set and the
M-set is c2i0H set. This latter set is depicted in figure 8. The confined set is a
square with smooth boundary. However, the layout of the escape values outside
the set is already indicative of a richer structure. Since hyperbolic numbers are
equivalent to scators with only one director component H→ E1, the sets c2i0H
and c2i0E1 are equal.

3.1 self-similarity - small copies

Let us have a closer look at the negative real scalar axis of the c2i0E2(s;x, 10−17)
set in figure 3. It reveals smaller copies of itself! The pattern of the escape ve-
locities in the vicinity of the set is quite complex. It exhibits straight bands at
45° whenever there is a copy of the larger set. Simultaneously there are well
defined curves that resemble arcs of circles or parabolae in the midst of rather
complicated structures. In figure ??, several small copies of the larger set are
observed between −2 and −1.4. The copy centered at −1.769 · · · is shown on
a larger scale in figure 3a. The number of iterations was increased as smaller
regions are magnified, in order to preserve a similar resolution in the observed
patterns. Its structure is remarkably similar to that of figure ??. It reproduces
the roundish centre with symmetric arrows on its sides and the symmetric struc-
tures above and below merging with a shred bound region inscribed in a larger
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(a) inset of figure 1 with mag-
nification × 2.2 limited to 12
iterations.−2.1786 < s <
−0.9482, −0.6560 < x < 0.5743,
−0.1201 < y < 1.110 ,

(b) inset of figure 1 with magnification × 11.3 limited
to 12 iterations.−1.8108 < s < −1.5678, −0.16238 <
x < 0.08064, −0.97 < y < 1.79 ,

Figure 2: Detail of the region located at −1.769 of the c2i0E2(s;x, y) set shown
in figure ??. Self-similar smaller copies of the diamond-like figure are observed!

square. It also exhibits even smaller copies of itself at a much smaller scale in
between −1.792 and −1.7805.

This result is of course reminiscent of the self copies of the M-set in the complex
plane c2i0C. The cardioïds situated between the Myrberg-Feigenbaum (MF)
point −1.401 . . . and −2 of the complex Mandelbrot set [10], are located at
exactly the same positions on the real axis as the self- similar rhomboid-like
figures of the c2i0E2(s;x, y) scator set within computer error. Furthermore,
the relative size of the small cardioïd-like components are proportional to the
relative size of the rhomboid-like figures. There are an infinite number of small
copies of the larger M-set. The c2i0E2 set seems to also have an equivalent
infinite number of small copies of itself in the vicinity of the scalar axis. Just
as the M-set has a period doubling cascade region converging towards the MF
point, there are an infinite number of smaller diamond like figures in the scator
set, apparently converging to this very same periodic-chaotic limit.

and

3.2 Planes with constant second director value

We have shown that a rich fractal like structure is revealed if the second di-
rector component is set to small value different from zero, (illustrated with
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-1.792 -1.7805 -1.769 -1.7575 -1.746

0.023

0.0115

0.

-0.0115

-0.023

1.´ 10
-17

(a) inset of figure ?? with magnification ×95.6
limited to 160 iterations.

Figure 3: Detail of the region located at −1.769 of the c2i0E2(s;x, 10−17) set
shown in figure ??. Self-similar smaller copies of the diamond-like figure are
observed!

y = 10−17). In figure 6, we show a sequence of sets from c2i0E2(s;x, 10−20)
to c2i0E2(s;x, 10−1). Each point is evaluated starting with

o
ϕ0= (0; 0, 0) and

o
c = (s;x, y), s is scanned from −2.125 to 0.375, while x is scanned from −1.25 to
1.25. The bounded region becomes smaller and departs form the diamond-like
shape moving steadily towards a bird-like form as y is increased. The imprint is
always squeezed in the forefront to the right in a plane where s = 0. This result
is expected because the scator magnitude (2.5) has a term x2y2

s2 that diverges
for non zero x, y. Thus, no scator iteration can be bound in the region where
this term becomes very large. The wings have a central lobe and possibly a
second smaller lobe. They become fuzzy on the edge where a Fatou dust like
boundary is observed. The arrow on the left side becomes a tail with three pro-
tuberances. The upper and lower bulges resemble smaller copies of the wings.
The protuberance on the left is a copy of the larger protuberance, most likely
with doubling period just as the buds in this region in the complex Mandelbrot
set. Eventually, at y = 0.1, the tail is almost detached from the main body.

In another sequence, depicted in figure 7, we show sets from c2i0E2(s;x, 0) to
c2i0E2(s; y, 1.1) in steps of 4y = 0.1. Again, points are evaluated starting
at

o
ϕ0= (0; 0, 0) and o

c = (s;x, y), s is scanned in the ±1.25 interval centered
at − 7

8 = −0.875 , while x is centered at 0. The first and second insets in
figure 7 correspond to the initial and final insets in figure 6. The bound set
becomes smaller as the distance from y = 0 increases. There are no longer
visible bound points at y = 0.2 for positive s (The bird looses its head). At
y = 0.3, the remnants of the left arrow vanish and the bound region lies within
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the (−0.875, 0) interval (The bird looses its tail). The out-most bound point
must be located at y = 9

8 = 1.125 where the upper tip of the diamond is located.
Recall that there must be a diamond-like shape in the perpendicular s, êy plane
identical to the one shown in the first s, êx inset. This feature is not visible in
the last inset of figure 7 because the tip becomes very thin and is thus difficult
to see at this magnification. Indeed, from the sequence in figure 6, it can be
seen that the tip is approximately 10−7 thick between 1.0 and 1.125.

4 quadratic iteration with hyperbolic numbers

The quadratic iteration with hyperbolic numbers gives rise to a square centered
at − 7

8 with sides equal to 9
4
√

2 [1]. Numeric evaluation of the quadratic iteration
for initial z0 = 0 The square diagonals (with 9

4 length) lie parallel to the real
and hypercomplex axes. If the bound criterion for a hyperbolic number a+ b ê,
(ê · ê = 1, ê /∈ R) is a2 ≤ ε and b2 ≤ ε, the bound set is equal to a square [2].
This set is the counterpart of the Mandelbrot set for complex numbers but in
two dimensional hyperbolic geometry. The boundary for the hyperbolic set, is
made up of four straight lines void of the complexity shown by the M-set. There
are neither small-copies of the set nor a structure within the bound region as
can be seen in figure 8.

The Julia sets obtained for arbitrary initial point z0 give rise to rectangles [3].
These rectangles obtained for the hyperbolic case, are the twins of the filled
in Julia sets Kc, for the quadratic iteration in the complex plane. It has been
pointed out that if the bound criterion is established with the hyperbolic number
magnitude a2− b2 ≤ ε, the confined set need not be rectangles [4]. Nonetheless,
numeric evaluations using the hyperbolic number’s magnitude |z|2 = a2 − b2

still yield squares for the hyperbolic M-set and rectangular figures for the Kc

sets. Panchelyuga et al. [5] have argued that this result is due to rounding
errors introduced by the computing algorithms when dealing with the difference
of very large numbers.

In this communication, we introduce a three dimensional hypercomplex alge-
bra that contains the hyperbolic H numbers when only two components are
considered. The hyperbolic or real scator algebra product is associative and
commutative provided that divisors of zero are excluded. However, the prod-
uct does not distribute over addition but in some special cases. It is possible
to establish well defined rules for the quadratic mapping with real scator alge-
bra. That is, the square and addition operations, although not bilinear, can be
consistently constructed. Furthermore, an order parameter can be established
so that a bound criterion can be employed. The bound set produced by scator
numbers under the quadratic iteration mapping, exhibit small self-similar copies
of the larger set. The boundary of the confined set has a rich structure. The
contours of the iso-escape velocity sets also show rather elaborate patterns.
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5 The x, y plane

Consider planes where the scalar component s is maintained constant, while the
values in x, y are scanned. These plots are entirely new since both axes are now
hypercomplex axes; There is no real axis in these plots! Confined sets should be
obtained, at least in the vicinity of the origin, in the interval where s is between[
−2, 1

4
]
. In figure 9, c2i0E2(0.1;x, y) to c2i0E2(−1.1;x, y) sets are shown in

steps of 4s = 0.1 for scans in x, y of ±1. There are also confined sets images
beyond s = 1.1 but with much smaller dimensions. The sets produced at x, y
planes where self similar copies were observed in the s, x plane, also exhibit
self similar structures in the x, y plane. Besides the inversion symmetry in the
director components described in the previous section, there is symmetry when
the two director components are interchanged in equation (3.2). Therefore, there
is an additional 45° symmetry in the x, y plane as observed in the numerical
results. The ek2-like figure depicted at s = 0.1 is repeated at various planes,
for example from −0.6 to −0.9. The four turbans in the diagonals of inset at
s = −0.2 alternate with diploid figures on the axes lines. At s = −0.4 straight
lines with fuzzy edges come out producing a square shape. In the following
insets remnants of the straight lines are displaced towards the edges until frame
s = −0.9. At −1.0 an interlaced necklace can be seen with four droplets or
tilab3 at the ends. These tilab are made up of ever-smaller tilabs. There is a
loltun4 at the centre of the figure. The halo around the central confined figure
is also a feature that reappears again and again, as may be seen in the last inset
of figure 9.

6 Conclusions

The quadratic iteration in three dimensional real scator space exhibits a rich
boundary structure with complex escape velocity surrounding patterns. The
hyperbolic numbers square bound set is obtained when the real scator numbers
are constrained to only two non vanishing components.

Self similar small copies of the larger bound set are obtained in the scalar (real)
axis located at the same positions and relative sizes of the small M-set copies
found on the real axis for the complex Mandelbrot set. Attractive fixed points
are obtained when the quadratic function composition R (R (R (z))) · · · = Rn (z)
returns the original argument Rn (z0) = z0. In the real axis, they are obtained
from the real roots of the polynomials z = 0, z2 + z = 0, for a 1 period cycle;(
z2 + z

)2 + z = 0, for a 2 period cycle;
((
z2 + z

)2 + z
)2

+ z = 0, for a 3
period cycle, etc. Recall that R is a subset of the 1 +m dimensional real scator
set. Thus these roots, are also roots of the 1+2 dimensional scator set. It is

2ek-chaneb - star with four spikes in Mayan language.
3tilab - arrow in tseltal, one of the Mayan languages still spoken in southern Mexico.
4loltun - stone flower.
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known that there are an infinite number of real polynomials’ roots on this axis
that come from the nth cycle periods. Each of the fixed points has a basin of
attraction. Furthermore, each of them exhibit self similar copies of the larger
set. Hence, for the quadratic iteration with real scators, there are basins of
attraction around the attractive fixed points in the scalar axis. These basins
are observed in the s, x plane as shown in figure 3, the s, y plane (that is identical
to the s, x plane) and the x, y plane as seen from figure 9. Thus, this real scator
fractal set exhibits basins of attraction in a three dimensional space. Moreover,
these small copies are self similar 3D copies of the larger 3D bound set.

Many questions open up regarding these new fractal structures. So far, we
have found no evidence of self-similar structures lying outside the scalar axis.
Whether they exist is an open problem. Little has been mentioned regarding
the Julia sets produced with real scator numbers c2i(cs; cx, cy)E (s;x, y) and
its relationship with the c2i0E2(s;x, y) set. This issue will be undertaken in a
forthcoming communication. The c2i0E2(s;x, y) set is much more difficult to
explore than the complex M-set since it involves a three dimensional structure.
Two dimensional renderings can be made not only in planes with one constant
component (as have been shown here) but also in inclined planes and even in
non planar surfaces. Magnifications of different regions of the c2i0E2(s;x, y) set
reveal extraordinary structures that we have only glimpsed at in an unsystematic
fashion. 2D movies should prove useful to visualize the intricacies of the set
[12]. Three dimensional renderings should also turn out to be very useful to
visualize the nature of these confined quadratic iteration real scator sets. We
have produced some preliminary images using a 3D rendering program [11]
as the one reproduced in figure (10). The 3D self similar smaller set located
around (−1.75, 0, 0) is clearly visible. The two diamond shapes at the planes
where one of the hypercomplex components is zero are also reckoned as well as
the squezzing around the s = 0 plane on the far right. The various layers and
the way they coalese are an ode to mathematical enchantment.
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(a) 100 (b) 75

(c) 50 (d) 25

Figure 4: z angle
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(a) -25 (b) -50

(c) -75 (d) -100

Figure 5: v
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Figure 6: Slices for small y values in the s, êx plane of the bound quadratic
iteration c2i0E2(s;x, y) set with constant second director component y between
0 and 0.1 labeled on the upper border of each frame.
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Figure 7: Slices of the bound quadratic iteration c2i0E2(s;x, y) set with y
hyper-axis between 0 and 1.1 in 0.1 steps. The abscissa s is scanned in the
±1.25 interval centered at −0.875 whereas the ordinate x is scanned in the
same interval but centered at the origin.
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-2.2

Figura 8: Bound set (in light gray) under quadratic iteration of hyperbolic num-
bers c2i0H. Bounding condition is a2 − b2 ≤ 4. (evaluation for each point is
limited to 60 iterations).
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Figure 9: Slices of the c2i0E2(s;x, y) sets (in light gray) shown at constant scalar
component s. The x, y plane scans, where both axes represent hypercomplex
components, span from −1 to 1 in both directions for all insets.
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Figure 10: Three dimensional rendering of the c2i0E2(s;x, y) set produced with
P. Willenius rendering program [11] . The bud on the far left (in light blue) is a
self similar copy of the larger set. The straight lines leading to vertices, sharper
on the upper part and in perspective comming out of the page, correspond to
the squares obtained for the planes x = 0 and y = 0.
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