ray tracing programimes: x

M. Ferndndez-Guasti

March 20, 2016

e-mail: mfg@xanum.uvam.mx, url: http://luz.izt.uam.mx

1 introduction

Tt is possible to perform visualization (in 2D) of the three dimensional structure
via ray tracing. It is essential to use open source programmes in order to be able
to modify them. Furthermore, open source programmes, in addition to being
free, are best suited for colaboration and the advancement of human knowledge.

2 programme for ix

In order to include the fractal with imaginary scators under the quadratic itera-
tion, codenamed iz, (pronounced ’eesh’) it is necessary to modify the recurrence
relationship and the magnitude according to imaginary scator algebra.

The iteration involves now three functions. It should be performed with an
efficent and fast language, for example C++. The lines here below outline the
recurrence relationships. It would be preferable to use the notation, s for the
scalar, and x,y for the director components:

{
double s2 = z.s * z.s;
double x2 = z.x * zZ.X;
double y2 = z.y * z.y;

double news = s2 - x2 - y2 + (x2 * y2) / s2;
double newx = 2.0 * z.s *x z.x * (1 - y2 / s2);
double newy = 2.0 * z.s *x z.y * (1 - x2 / s2);

Z.8 T News;

newx;

Z.y = newy;

3 modified Mandelbulber to include 7z

In this example, the Mandelbulber programme v 2.07-1 was used. It is developed
by the project leader Krzysztof Marczak and programmers Krzysztof Marczak,
Sebastian Jennen, Graeme McLaren, Bernardo Martelli.

e add in Mandelbulber, v 2.07-1file /src/fractal_formulas.cpp

/** quadratic iteration in imaginary scator algebra */
void ImaginaryscatorPower2Iteration(CVector3 &z)

{
double x2 = z.X * z.X;
double y2 = z.y * z.y;
double z2 = z.z * z.z;
double newx = x2 - y2 - 22 + (y2 * z2) / x2;
double newy = 2.0 * z.x * z.y * (1 - z2 / x2);
double newz = 2.0 * z.x * z.z * (1 - y2 / x2);
Z.X = newx;
Z.y = newy;
Z.Z = newz;

}

e add in fractal_formulas.hpp

void ImaginaryscatorPower2Iteration(CVector3 &z);

e add in fractal_list.cpp

fractalList->append(sFractalDescription("Imaginary scator Power 2",

e add in fractal_list.hpp

fast_imagsca_power2 = 152,

e add in compute_ fractal.cpp

case fast_imagsca_power2:
{
ImaginaryscatorPower2Iteration(z);
break;

e also modify and add in line 711

// r calculation
// r =sqrt(z.x * z.x + 2.y * 2.y + 2.2 * 2.2 + W * W);
switch(fractal->formula)

{
default:
{
r =sqrt(z.x * z.x + 2.y * 2.y + 2.2 ¥ 2.2 + W *x W;
break;
}
//scator magnitudes
// magnitude in imaginary scator algebra
case fast_imagsca_power2:
{
r =sqrt(z.x *x z.x + 2.y * 2.y + 2.2 * 2.2
+(z.y*xz.y* z.z*xz.2) / (z.x ¥ 2.3));
break;
}
X

e also add in: switch (formula) line 836

case fast_imagsca_power2:

e add in /usr/share/mandelbulber2/language/ qt_data_en.ts (in two places)
just after "../qt_ data/fractal _mandelbulb_ power_2.ui"

<location filename="../qt_data/fractal_imagsca_power_2.ui" line="14"/>

<location filename="../qt_data/fractal_imagsca_power_2.ui" line="20"/>

e copy file fractal _mandelbulb_ power_ 2.ui in /usr/share/mandelbulber2/qt_ data
with name

fractal_imagsca_power_2.ui

e to compile and install

cd makefiles

gmake mandelbulber.pro
make all

cd ..

./install

	introduction
	programme for ix
	modified Mandelbulber to include ix

