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09340 México D.F., Ap. Postal. 55-534, Mexico
mfg@xanum.uam.mx

Received November 30, 2014; Revised July 4, 2015

The quadratic iteration is mapped within a nondistributive imaginary scator algebra in 1 + 2
dimensions. The Mandelbrot set is identically reproduced at two perpendicular planes where only
the scalar and one of the hypercomplex scator director components are present. However, the
bound three-dimensional S set projections change dramatically even for very small departures
from zero of the second hypercomplex plane. The S set exhibits a rich fractal-like boundary
in three dimensions. Periodic points with period m, are shown to be necessarily surrounded by
points that produce a divergent magnitude after m iterations. The scator set comprises square
nilpotent elements that ineluctably belong to the bound set. Points that are square nilpotent on
the mth iteration, have preperiod 1 and period m. Two-dimensional plots are presented to show
some of the main features of the set. A three-dimensional rendering reveals the highly complex
structure of its boundary.

Keywords : 3D bifurcations; hypercomplex numbers; imaginary scators; quadratic iteration; Man-
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1. Introduction

The iterated quadratic mapping satisfies the recur-
rence relationship zn+1 = a2z

2
n + a1zn + c0, where

the quantities zn, c0 are elements of a module and
a2, a1 are elements of a ring. In real and complex
algebra, the module and ring become fields, that
is, sets with commutative group properties under
the addition and product operations. In R, the
quadratic mapping gives rise to the logistic map,
while in C, the bound iterations define the Julia and
Mandelbrot sets in dynamical and parameter space,
respectively. These one- and two-dimensional cases
are prototypical examples that exhibit continued
bifurcation leading to chaos in discrete dynamical
systems. The quadratic mapping can be extended to
higher dimensions using other algebraic structures

such as quaternions or Clifford algebras [Helmstet-
ter & Micali, 2008], matrix algebras [Nascimento-
Baptista et al., 2012], nonassociative algebras, etc.
Some of the field properties are necessarily lost in
the generalization to higher dimensions. For exam-
ple, quaternions and matrix algebras are no longer
commutative and octonions are neither commuta-
tive nor associative. In some of these alternatives,
such as hyperbolic complex numbers, the structure
is no longer a division algebra, that is, not all ele-
ments have an inverse. Nonetheless, these algebraic
structures are well suited for some physical scenar-
ios such as Minkowski space-time [Catoni et al.,
2008].

There have been several efforts to extend two-
dimensional fractal structures to higher dimensions.

1630002-1

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

6.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 M
an

ue
l F

er
na

nd
ez

 o
n 

03
/1

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0218127416300020


February 2, 2016 9:17 WSPC/S0218-1274 1630002

M. Fernández-Guasti

For example, four-dimensional quaternion general-
izations of the Mandelbrot and Julia sets [Gomatam
et al., 1995]. However, these mappings yield little
new beyond the complex case [Bedding & Briggs,
1995]. On the other hand, there has been much
less work in three-dimensional algebras compared
with four or eight dimensions. The reason being
that emphasis has been laid on division or normed
algebras. The only possible division algebra, up
to isomorphism, in dimension higher than two is
four-dimensional (Frobenius theorem). However, if
divisors of zero are permitted, the scope becomes
much broader. There are some isolated proposals of
three-dimensional number systems such as ternary
algebra [Cheng & Tan, 2007] and triplex algebra
[White & Nylander, 2009; Rama & Mishra, 2011]
or variations of them [Bonzini, 2010] that render
interesting bound sets under continued iteration.
Visualizations of some of these sets, notably quasi-
Fuschian fractals [Araki, 2006] and the Mandel-
bulb, have received wide dissemination [Aron, 2009;
Sanderson, 2009]. The visualization of fractal geom-
etry in three dimensions is quite challenging and
has become a specialized study of programmers
and developers. Methods originated in geographic
visualization, architecture and digital animation are
proving quite useful to render these rather compli-
cated structures [Blackledge, 2002].

In the present approach, the three-dimensional
product and addition operations of imaginary sca-
tor algebra are invoked to appraise the quadratic
mapping. The algebra is akin to the subset of par-
avectors in Clifford algebras where numbers contain
a scalar and a vector part. However, it differs from
Cliffordian structures among other things, because
although it is equipped with an order parameter,
this quantity does not have an associated bilin-
ear form. Scator elements can be viewed as hyper-
complex numbers in 1 + n dimensions. They have
n copies of the complex numbers set embedded
in the higher dimensional set, all sharing the real
part of the hypercomplex number. If all but one
of the scator director components is nonvanishing,
the complex plane is recovered [Fernández-Guasti &
Zald́ıvar, 2013a]. Imaginary scator algebra is a finite
dimensional algebra over the reals with a multiplica-
tive identity. It is thus a hypercomplex algebra in
the sense of Kantor and Solodovnikov except for the
distributivity condition that is commonly requested

[Kantor & Solodovnikov, 1989]. In general, the
scator product does not distribute over addition.
However, the scator product is commutative and
all elements in the scator set have an inverse, except
zero. Nonetheless, scator algebra is no longer a divi-
sion algebra because it has zero products of nonzero
factors. In particular, nilpotent elements exist when
the two factors are equal. Nonetheless, as we shall
presently see, this restriction does not prevent the
imaginary scator number system from generating
consistent iterated mappings.

The structure of this manuscript is as follows:
In Sec. 2, the necessary elements of imaginary scator
algebra in 1+2 dimensions are introduced. Empha-
sis is laid on the squaring function and the nilpotent
conditions. The quadratic iteration with imaginary
scator numbers is presented in Sec. 3. In Sec. 4,
one of the salient features of the 3D fractal is dis-
cussed: Periodic points have a vicinity that produce
a scator with divergent magnitude. Points that are
eventually square nilpotent are discussed in Sec. 5.
Section 5.1 establishes the lack of an upper limit for
the scator magnitude bound points. The elemen-
tary symmetries of the three-dimensional set are
discussed in Sec. 6. Conclusions are drawn in the
last section.

2. Imaginary Scators

Imaginary scator elements, sometimes referred to as
elliptic scators, in 1 + 2 dimensions can be written
in terms of three real numbers

o
ϕ = (s;x, y), s, x,

y ∈ R. The first component, named the scalar com-
ponent, stands on a different ground from other
components. To stress this fact, it is separated
by a semi-colon from the rest. Subsequent compo-
nents are named director components. They are not
referred to as a “vector part” because vectors are
not a subset of the scator set [Fernández-Guasti &
Zald́ıvar, 2013b]. Scator elements are decorated
with an oval placed overhead.1 Scators can be repre-
sented in terms of a basis,

o
ϕ = s+xěx +yěy, where

ěx, ěy /∈ R. Addition of scators is defined by the sum

of each component
o
α +

o
β = (a0 + a1ěx + a2ěy) +

(b0 + b1ěx + b2ěy) = (a0 + b0) + (a1 + b1), ěx +
(a2 + b2)ěy. The scator set is a commutative group
under addition. The product operation of scators

1\overset{o} in LaTEX lore.
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o
α = (a0; a1, a2),

o
β = (b0; b1, b2), is defined by

o
α

o
β = a0b0

(
1 − a1b1

a0b0

)(
1 − a2b2

a0b0

)

+ (a0b1 + b0a1)
(

1 − a2b2

a0b0

)
ěx

+ (a0b2 + b0a2)
(

1 − a1b1

a0b0

)
ěy. (1)

This definition departs from the real scator prod-
uct definition and establishes a different topology
[Fernández-Guasti & Zald́ıvar, 2013a]. This state
of affairs is analogous to the differences that arise
between complex algebra (i2 = −1) and hyperbolic
numbers algebra (i2 = 1) due to the product defini-
tion of two imaginary units as minus one or one
respectively. The product operation of two equal
imaginary scators, that is, the square of an imagi-
nary scator

o
ϕ = (s;x, y) is then

o
ϕ

2
= (s + xěx + yěy)2

= (s�;x�, y�)

= s� + x�ěx + y�ěy,

o
ϕ

2
=
(

s2 − x2 − y2 +
x2y2

s2

)

+
(

2sx − 2xy2

s

)
ěx

+
(

2sy − 2yx2

s

)
ěy.

(2)

If y = 0,
o
ϕ

2
= (s+xěx)2 = (s2−x2)+(2sx)ěx, or, if

x = 0 in (2),
o
ϕ

2
= (s + yěy)2 = (s2 − y2) + (2sy)ěy,

we recover the complex algebra product. From these
last two equations if s = 0, and x = 1 or y = 1
respectively, the square of the hyperimaginary units
are ě2

x = −1 and ě2
y = −1. An inverted hat or

check is used to decorate unit director components
in imaginary scators versus the hat used to label
them in real scator algebra. From the symmetry
of the x and y variables, it is clear that the two
hyperimaginary axes are equivalent. Two copies of
the complex plane are embedded in 1 + 2 imagi-
nary scator algebra, sharing the scalar axis and hav-
ing two distinct but equivalent hypercomplex axes.
From the product of two different scators (1), it can
be seen that (s + xěx)(s + yěy) = s2 + sxěx + syěy.

If s = 0 and x = y = 1, then ěxěy = 0. Thus, due to
the addition and product properties, the two hyper-
complex axes can be visualized as orthogonal axes.
However, due to the lack of distributivity, the rela-
tionships ěxěy = −δxy are not sufficient to establish
the product operation rules.

To insure consistency, different component lim-
its are taken in succession, evaluated first for the
director components variables in any order, and
thereafter, evaluating the scalar component limit.
For example, if x = 0 and s = 0, the limit on the
director component variable x → 0 is taken first
s� + x�ěx + y�ěy = (s2 − y2) + 2syěy, and then
the scalar variable limit s → 0 is evaluated, thus
s� + x�ěx + y�ěy = −y2. This criterion is extended
to all other functional relationships.

The conjugate of a scator
o
ϕ = s + xěx + yěy

is defined by the negative of the director com-
ponents, while the scalar component remains
unchanged

o
ϕ
∗

= s − xěx − yěy. The square mag-
nitude of a scator ‖ o

ϕ‖2 is equal to the scator times
its conjugate

‖ o
ϕ‖2 =

o
ϕ

o
ϕ
∗

= s2 + x2 + y2 +
x2y2

s2
. (3)

This quantity is real and can thus be used as an
order parameter. It will be employed to establish
the bound criterion in the quadratic mapping. The
multiplicative inverse of

o
ϕ is

o
ϕ
−1

=
1

s2

(
1 +

x2

s2

)(
1 +

y2

s2

) o
ϕ
∗
. (4)

From the above expression,
o
ϕ is always invertible

except if all components are zero or if s = 0 when
xy �= 0.

The subspace E
1+2 ⊂ R

3, where the scator
magnitude (3) is finite, is defined by

E
1+2 = { o

ϕ = s + xěx + yěy : s �= 0 if x, y �= 0},
(5)

that is, the scalar component should not be zero
if the two director components are finite. Let the
extended set E

1+2 be defined in a similar fashion as
the extended complex plane but adding one more
dimension; That is, the extended scator set

E
1+2 = E

1+2 ∪ { o
ϕ : ‖ o

ϕ‖2 = ∞} = R
3 ∪ {∞},

(6)
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involves three dimensions and includes the points at
infinity. The points at infinity are obtained by let-
ting any of the scator components tend to infinity,
that is, ‖ o

ϕ‖2 → ∞ if s → ∞ and/or x → ∞ and/or
y → ∞. Extensions of complex algebra to higher
dimensions equipped with a quadratic norm, impose
this type of condition. Namely, the points at infinity
require that at least one of the components tends
to infinity. However, there is also another possibility
in scator algebra. If s becomes very small while x, y
are both different from zero, the magnitude of the
scator, from the magnitude definition (3), becomes
very large. There is then a set of points on the x, y
plane whose magnitude approaches infinity

Rs =
{

s + xěx + yěy ∈ E
1+2 : x �= 0, y �= 0,

‖(s;x, y)‖ −→
s→0

∞
}

. (7)

This set, also present in real scator algebra, is
depicted in Fig. 1 of reference [Fernández-Guasti,
2014]. It includes all points of the plane s = 0,
except for the two, on axis straight lines.

Definition 2.1. The point s0 + x0ěx + y0ěy has
a divergent vicinity if there exists a set of points
(s0 +δs)+(x0 +δx)ěx +(y0 +δy)ěy for infinitesimal
δs, δx, δy ∈ R, whose magnitude tends to infinity
‖(s0 + δs) + (x0 + δx)ěx + (y0 + δy)ěy‖ → ∞.

The point (0; 0, 0) has a divergent vicinity since the
magnitude of (0; 0 + δx, 0 + δy) is infinite. Further-
more, all points with infinitesimal scalar and arbi-
trary nonvanishing director components (δs;x, y)
have a divergent vicinity since the magnitude of
points (δs − δs;x + δx, y + δy) is infinite. The only
points with finite magnitude within the x, y plane
at s = 0 are those lying on the axes lines x = 0 or
y = 0.

Lemma 1. The only nontrivial square nilpotent ele-
ments in 1 + 2 dimensional imaginary scator alge-
bra are elements whose three components have equal
absolute value.

Proof. A scator element is zero if and only if, all
its components are zero, i.e.

o
ϕ = 0 ⇔ o

ϕ = (0; 0, 0).

A nonzero element is nilpotent if
o
ϕ

n
= 0 for some

n ∈ N. In particular, a scator element is square

nilpotent if
o
ϕ

2
= (s�;x�, y�) = (0; 0, 0). The square

function components (2), can be factored as

o
ϕ

2
= s� + x�ěx + y�ěy

= s2

(
1 − x2

s2

)(
1 − y2

s2

)
+ 2sx

(
1 − y2

s2

)
ěx

+ 2sy
(

1 − x2

s2

)
ěy. (8)

Since all scator components of the squared func-
tion must be zero, then the required conditions are
x2 = s2 and y2 = s2. The absolute value of the
director components have to be equal to the scalar
component. �

Corollary 2.1. The square of an invertible element
is invertible if it is not square nilpotent.

Proof. All imaginary scator elements in E
1+2 have

inverse except zero. The square of a nonzero element
is then invertible if it is different from zero. �

3. Iterated Quadratic Mapping

Consider the family of maps Pc :
o
ϕ 	→ o

ϕ
2

0 +
o
c from

E
1+2 to E

1+2, where the variable
o
ϕ and the con-

stant
o
c are now scator elements. Pc is a quadratic

mapping in the sense that it involves the evaluation
of the square function plus a constant. The square
function q, is defined by the product of two arbi-
trary elements in the algebra when the two factors
are equal. It is also a quadratic mapping over R in
the following sense

Lemma 2. The square function mapping q :
o
ϕ 	→ o

ϕ
2

0

from E
1+2 to E

1+2 satisfies q(λ
o
ϕ) = λ2q(

o
ϕ), λ ∈ R.

Proof. A scalar λ ∈ R is an imaginary scator
with all director components equal to zero, i.e.
o
λ = λ + 0ěx + 0ěy,

o
λ∈ E

1+2. That is, real algebra
is embedded in scator algebra. Although in general,
the product does not distribute over addition, in
the particular case of a scalar times an arbitrary
scator, the scalar does distribute over the scator
components [Fernández-Guasti & Zald́ıvar, 2013b].
This result can be seen from (1), by letting a0 = λ,

a1 = a2 = 0. Therefore, λ
o
ϕ = λs + λxěx + λyěy for

all λ ∈ R and for all
o
ϕ in E

1+2. From (8),

q(λ
o
ϕ) = λ2s2

(
1 − λ2x2

λ2s2

)(
1 − λ2y2

λ2s2

)
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+ 2λsλx

(
1 − λ2y2

λ2s2

)
ěx

+ 2λsλy

(
1 − λ2x2

λ2s2

)
ěy.

Since λ2 is a scalar, it can be factored from the
above scator components

q(λ
o
ϕ) = λ2

[
s2

(
1 − x2

s2

)(
1 − y2

s2

)

+ 2sx
(

1 − y2

s2

)
ěx + 2sy

(
1 − x2

s2

)
ěy

]
.

Therefore q(λ
o
ϕ) = λ2q(

o
ϕ). �

In abstract algebra, it is customary to introduce
the associated mapping bq : E

1+2 × E
1+2 → E

1+2

defined by bq(
o
α,

o
β) = q(

o
α +

o
β)− q(

o
α)− q(

o
β). Some

authors [Helmstetter & Micali, 2008, Chapter 2]
request that the associated mapping should also be
R bilinear in a quadratic mapping. This criterion is

not fulfilled in scator algebra, bq(λ
o
α,

o
β) �= λbq(

o
α,

o
β)

and bq(
o
α, λ

o
β) �= λbq(

o
α,

o
β). The Mandelbrot-like set

is obtained by fixing the initial point
o
ϕ0 = (0; 0, 0)

and varying the parameter
o
c. Bound points obtained

by iteration of this procedure comprise the corre-
sponding M-set in E

1+2. The confined set in param-
eter space for imaginary scators in 1+2 dimensions
is given by

S = {o
c ∈ E

1+2 : m ∈ N, ‖P ◦m
c (0)‖ � ∞}, (9)

where Pc :
o
ϕ 	→ o

ϕ
2

+
o
c, P ◦m

c denotes the m-fold
composition P ◦m

c = Pc ◦ Pc ◦ · · · ◦ Pc of the func-
tion Pc with itself and the 0 argument in P ◦m

c (0)
means that the function is initially evaluated at
zero. A two-dimensional rendering of this set at a
constant second hyperimaginary plane is shown in
Fig. 1. The picture is reminiscent of the Mandelbrot
set although the main cardioid as well as the bulbs
are squeezed. Similar maps are obtained even for
tiny departures from zero in the second hyperplane.
Values as low as y = 10−40 already show this squeez-
ing behavior. At these very small coordinate val-
ues, care has to be taken regarding the precision
of the numerical calculations. The iterated function
satisfies the recurrence relationship

o
ϕm+1 =

o
ϕ

2

m +
o
c,

where the subindex stands for the iteration number.

Fig. 1. Two-dimensional rendering of the S set in E
1+2

(s; x, 10−7). The abscissa corresponds to the scalar (or real)
s axis, −1.8 < s < 0.6, while the ordinate depicts a director
component, say the hyperimaginary x axis (−1 < x < 1).
The other hyperimaginary director component (y axis), is
coming out of the page. The S set is evaluated at a constant
y = 10−7 hyperplane.

For
o
c = s+xěx +yěy, the quadratic iteration recur-

rence relationship for the scalar component is

sm+1 = s2
m

(
1 − x2

m

s2
m

)(
1 − y2

m

s2
m

)
+ s (10a)

and for the director components, the recurrence
relationships are

xm+1 = 2smxm

(
1 − y2

m

s2
m

)
+ x, (10b)

ym+1 = 2smym

(
1 − x2

m

s2
m

)
+ y. (10c)

4. Divergent Magnitude Set in the
Vicinity of Periodic Points

4.1. Periodic points

Periodicity is defined in an analogous fashion as in
complex dynamics [Blanchard, 1984, p. 88].

Definition 4.1. If
o
ϕm =

o
ϕ0 for some m, then

o
ϕ0 is

a periodic point and O+(
o
ϕ0) is a periodic orbit. If

m is the first positive integer such that
o
ϕm =

o
ϕ0,

then m is the period of the orbit. A point
o
ϕ is even-

tually periodic if, for some m, P ◦m(
o
ϕ) is a periodic

point. The point
o
ϕ is preperiodic if it is eventually

periodic but not periodic yet.

1630002-5

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

6.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 M
an

ue
l F

er
na

nd
ez

 o
n 

03
/1

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 2, 2016 9:17 WSPC/S0218-1274 1630002

M. Fernández-Guasti

If the period of an orbit is 1,
o
ϕ0 is a fixed

point. The origin
o
ϕ0 =

o
c0 = 0 + 0ěx + 0ěy is

clearly a fixed point in the scator quadratic map-
ping. In parameter space, the initial point is always
o
ϕ0 = 0 + 0ěx + 0ěy. The first iteration gives the

additive constant
o
ϕ1 =

o
c = s + xěx + yěy. If s = 0

and x �= 0, y �= 0, the scator magnitude becomes
infinite. The divergent Rs plane is thus obtained
and is depicted as a vertical line in the s, x plane
for constant y = 10−7, as shown in Fig. 3. The
o
ϕ0 =

o
c0 = 0 + 0ěx + 0ěy fixed point thus has a

divergent vicinity. This Rs plane (in yellow) pro-
duces a squeezing of the M-set main cardioid
illustrated in Fig. 4.

4.2. Second iteration

The second iteration for the scalar is

s2 = s2

(
1 − x2

s2

)(
1 − y2

s2

)
+ s (11a)

and for the director components

x2 = 2sx
(

1 − y2

s2

)
+ x, y2 = 2sy

(
1 − x2

s2

)
+ y.

(11b)

The cycle 2 periodic points in parameter space
impose

o
ϕ2 =

o
ϕ0 = 0. The simultaneous equations

that ought to be fulfilled are then s2 = 0, x2 = 0
and y2 = 0. If x = y = 0, from (11a), s = 0 or
s = −1. If x = 0, y �= 0, from the second equation
in (11b), s = −1

2 ; substitution of x = 0 in (11a)
gives y = ±√

s2 + s and from the previous result
y = ± i

2 , where i2 ≡ −1 (x �= 0, y = 0 gives an
analogous result for x). If x �= 0, y �= 0, from (11b),
y = ±√s2 + s/2 and x = ±√s2 + s/2. Substitu-
tion of these expressions in (11a) gives s = −1

4 , and
this result back in the previous two equations gives
x = y = ± i

4 . The two solutions with real coefficients
are

o
c = 0 + 0ěx + 0ěy and

o
c = −1 + 0ěx + 0ěy.

The other eight possibilities have complex solutions:
−1

4 ± 1
4 iěx ± 1

4 iěy, −1
2 ± 1

2 iěx + 0ěy, −1
2 + 0ěx ±

1
2 iěy, but the scator coefficients must be real. There-
fore, there are no period 2 points lying outside the
scalar axis.

Due to s terms in the denominators, all three
components in iteration (11a) and (11b) become
large for nonzero director components if the scalar
becomes small. Consider the points that on the

second iteration map into the Rs set, whose mag-
nitude tends to infinity. That is, points where the
scalar component becomes zero while the director
components are nonzero, x2 �= 0, y2 �= 0. Only
the equation for the scalar component s2 = 0 is
imposed,

s4 + s3 − (x2 + y2)s2 + x2y2 = 0. (12)

Since there are three independent variables, this
equation represents a 2D surface embedded in 3D
space. Points on this surface, depicted in Fig. 2,
yield infinite magnitude scators on the second iter-
ation provided that x2, y2 �= 0. The points within
this surface clearly do not belong to the S set. If
one of the director variables is fixed, for example,
when a plane with constant director component is
analyzed, their intersection produces a (1D) curve
embedded in 3D space. Consider a plane where
y 
 s, x. Equation (12) can be approximated to
s2 − x2 + s ≈ 0. The terms involving s can be col-
lected as s2 +s = (s+ 1

2 )2− 1
4 . The equation is then

(s + 1
2)2 − x2 = 1

4 , a rectangular hyperbola with
center at (−1

2 ; 0, 0) and focii at −1/2 ± 1/
√

2. This
hyperbola intersects the scalar axis at 0 and −1 as
shown on the right graph of the middle row in Fig. 3.
However, as we saw earlier, there is a periodic point

Fig. 2. Points on surfaces given by Eq. (12) produce a diver-
gent magnitude on the second iteration.
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Imaginary Scators and Quadratic Mappings in Three Dimensions

Fig. 3. Polynomials (from top to bottom), s = 0, s2 − x2 + s = 0 and x4 − (6s2 + 6s + 1)x2 + (s4 + 2s3 + s2 + s) = 0. Plots
of x2 as a function of s are shown on the LHS. The corresponding plots for x as a function of s are shown on the RHS. Along
these curves, the scator magnitude becomes infinite in the first (top row), second (middle) or third (bottom) iteration.

at
o
c = −1+0ěx+0ěy. Furthermore, from real anal-

ysis we know that there is a period 2 fixed point at
−1 with its concomitant basin of attraction.

Consider a point in the vicinity of −1, s =
−1 + δs, where |δs| 
 1. Evaluate the polyno-
mial (12) with s → −1 + δs, x → δx, y → δy
recalling that sn = (−1)n + (−1)n−1nδs + · · · ,

δs =
δx2δy2 − (δx2 + δy2)

1 − 2(δx2 + δy2)
.

If δx2, δy2 
 1, then δs ≈ −(δx2 + δy2). The point
o
c +

o
δ = −(1 + δx2 + δy2) + δxěx + δyěy lies in

the vicinity of the point
o
c = −1 + 0ěx + 0ěy. The

quadratic iteration of this point evaluated to low-
est order in δx, δy is Pc(−(1 + δx2 + δy2) + δxěx +
δyěy) = 0− δxěx − δyěy, since s2 ≈ 1+2δx2 +2δy2

and thus s2− δx2 − δy2 +s ≈ 0. But this 0− δxěx −
δyěy point has an infinite magnitude. Therefore,
the period 2 point −1+ 0ěx + 0ěy has a vicinity
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−(1+ δx2 + δy2)+ δxěx + δyěy that maps to Rs on
the second iteration. The hyperbola (drawn in red)
leading to infinite magnitude in the second itera-
tion is superimposed on the bound set in Fig. 4. The
main cardioid is squeezed at the origin due to the
right branch of the hyperbola. Since 0 + 0ěx + 0ěy

is a solution to sn = 0 for all n, there is always a
curve intersecting the scalar axis at the origin. The
largest bulb to its left, is also squeezed at its center
located at −1, the period 2 point where the left
branch of the hyperbola intersects the scalar axis.

4.3. Third iteration

The cycle 3 periodic points in parameter space
impose

o
ϕ3 = 0. The simultaneous equations that

ought to be fulfilled are then s3 = 0, x3 = 0
and y3 = 0. Analytic solutions for the general case
are not possible because eighth order polynomials
are now involved. Dropping out a director compo-
nent lowers the single variable polynomial order
by two. The equation for the scalar component
s3 = 0 in a plane where y 
 s, x is approxi-
mately s2

2 − x2
2 + s ≈ 0. With the aid of (11a)

and (11b), this expression can be written in stan-
dard polynomial form for the hypercomplex director
variable x,

x4 − (6s2 + 6s + 1)x2

+ (s4 + 2s3 + s2 + s) = 0. (13)

The four solutions to this equation, plotted in the
lower row of Fig. 3, are

x = ±
√

1 + 6s + 6s2 ±√
1 + 8s + 44s2 + 64s3 + 32s4

√
2

.

Two solutions intersect the scalar axis at 0 and −1.7548 . . . , the latter being the location of the period 3
point on the real axis. The other two solutions do not intersect the scalar axis. The off axis period 3 points
in the s, x plane are approximately −0.122 ± 0.744ěx. Points that belong to the curves

s ±
√

1 + 6s + 6s2 ±√
1 + 8s + 44s2 + 64s3 + 32s4

√
2

ěx + δyěy,

generate divergent magnitude scators on the third
iteration. In Fig. 4, these curves are superimposed
on the S set evaluated at the hyperplane δy = 10−7.
The left most curve (in green) intersects the scalar
axis close to −1.75 where the center of the main
cardioid of the largest copy of the M-set is located
as can be guessed from Fig. 4. The remaining two
solutions (in magenta) intersect the off scalar axis
period 3 bulbs at their centers (−0.122 ± 0.744ěx)
producing a skew squeezing. If δy is strictly zero,
these curves no longer produce divergent magni-
tudes (thus not present in the M-set).

All bulbs suffer the same fate, a squeezing
at their centers where the mth periodic point is
located. There are surfaces similar to those depicted
in Fig. 2 for higher order polynomials. They inter-
sect each of the m centers and produce infinite
magnitude scators after the mth iteration. At the
intersection of these surfaces with a plane, curves
similar to those depicted in Fig. 4 are produced.

Let us generalize these assertions in the follow-
ing proposition:

Proposition 1. For every m periodic scator point
under the quadratic iteration mapping from E

1+2

Fig. 4. Divergent magnitude curves: one iteration (yellow),
two iterations (red), three iterations, intersecting the scalar
axis (green) and off axis (magenta). There are four hyper-
planes that produce this same set: y = ±δ and x = ±δ,
where δ = 10−7.
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to E
1+2 in parameter space, there is a vicinity that

produces a scator with divergent magnitude in the
mth iteration.

Proof. Periodic points with period m require that
o
ϕm = 0, that is, the point represented by the sca-
tor

o
ϕ1 =

o
c returns to zero after m iterations. The

periodicity condition
o
ϕm = sm + xměx + yměy =

0 + 0ěx + 0ěy, involves three equations in 1 + 2
dimensions. Namely sm = 0, xm = 0 and ym = 0.
Let the solution to these three equations in terms
of the initial variables be

o
ϕ1 =

o
c = s(m, rs) + x(m,

rx)ěx + y(m, ry)ěy, where the notation s(m, rs)
refers to the values of s for the mth iteration and
rs ≤ m is the rsth root. The notation for the direc-
tor coefficients x(m, rx), y(m, ry) follow a similar
convention. The solutions have been labeled with
different subindices in r because any of the m3 com-
binations between them is possible.

A divergent magnitude is obtained when the
scalar component of the mth iteration scator is
zero, while the director components do not vanish.
From the conjugation involution, the equation can
be written as sm = 1

2(
o
ϕm +

o
ϕ
∗
m) = 0. Consider an

arbitrarily small increment in any of the solutions,

say
o
ϕ1 +

o
δ =

o
c = s(m, rs)+ δs+(x(m, rx)+ δx)ěx +

(y(m, ry) + δy)ěy , such that sm = 1
2(

o
ϕm +

o
ϕ
∗
m) = 0

but xm �= 0 and ym �= 0. Points
o
ϕ1 +

o
δ are in the

neighborhood of
o
ϕ1. However, at the mth iteration,

these points produce a scator 0+xměx +yměy with
divergent magnitude. �

5. Nilpotent Points Iteration

Square nilpotent points are invariant points under

the quadratic iteration, since
o
ϕ

2
= 0, and the map-

ping P (
o
ϕ) is then an identity

o
ϕ 	→ o

ϕ
2

+
o
ϕ =

o
ϕ.

The critical orbit of a square nilpotent point
o
ϕ is

{0, o
ϕ,

o
ϕ, . . .}. It is thus a preperiodic point with

preperiod 1 and period 1. It is labeled as M1,1

in the notation of Misiurewicz points. It is then a
preperiodic point that after one preperiod becomes
a fixed point. From Lemma 1, nilpotent points
o
ϕ = ±s ± sěx ± sěy lie on the intersection of the
s = ±x and s = ±y planes, tilted at ±45◦ with
respect to the s axis. The projection of a point in
the s, x plane onto a plane containing the s axis
but inclined by θ in the x, y direction measured

from the x axis is x = r cos θ and y = r sin θ. For
a plane x = y, x = r cos(π

4 ) = 1√
2
r = r sin(π

4 ) = y.
The nilpotent lines s = ±x = ±y in the s, r plane
are thus s = ± 1√

2
r. These two straight lines lie

at r
s = arctan(±√

2) ≈ ±54.7◦ measured from
the s axis, they are depicted in yellow in Fig. 5.
These lines are superimposed over the confined S
set drawn in white. Coloring is somewhat different
from previous renderings to enhance the back-
ground. These lines are coincident with relevant
features of the S set. On the negative side of the
s axis, the largest bound region terminates at these
lines that delineates an arrow-like head. On the pos-
itive s side, the nilpotent straight lines coincide with
two of the large spikes coming out of the confined
region. These lines should be in white since they are
points within the bound set. However, they do not
appear in the numerical iterative process because
tiny departures in the rounding of

√
2 produce

Fig. 5. Confined quadratic iteration in parameter space and
square nilpotent curves for the first two iterations at the s
versus x = y plane. Square nilpotent points in yellow. Points

such that
o
ϕ

2
+

o
ϕ is square nilpotent are shown in red, magenta

and brown. Dot dashed lines are drawn to see the underlying
set points.
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large magnitude values. The magnitude of nilpo-
tent points is invariant under the quadratic map-
ping ‖ o

ϕ
2

+
o
ϕ‖ = ‖ o

ϕ‖ = ‖±s ± sěx ± sěy‖ and is
equal to ‖ o

ϕ‖ = 2|s| in 1 + 2 dimensions.

Lemma 3. If m is the first positive integer such that
P ◦m

c (0) is square nilpotent, the point
o
ϕ =

o
c is prepe-

riodic with preperiod 1 and period m in parameter
space.

Proof. The critical point for the quadratic mapping
is zero2 and is always the initial point in parame-
ter space

o
ϕ0 = 0. The first iteration of the func-

tion is P ◦1
c (0) =

o
c =

o
ϕ, since P ◦m

c (0) is square
nilpotent, P ◦1

c (P ◦m
c (0)) =

o
c =

o
ϕ = P ◦1

c (0). Then
P ◦1+m

c (0) = P ◦1
c (0) and thus M1,m =

o
c =

o
ϕ :

P ◦1+m
c (0) = P ◦1

c (0). �

Consider now points such that
o
ϕ is not square

nilpotent but
o
ϕ

2
+

o
ϕ is square nilpotent, that is

(
o
ϕ

2
+

o
ϕ)2 = 0. (14)

From Lemma 3, the preperiodicity is 1 and the
periodicity 2. The critical orbit is {0, o

ϕ, (
o
ϕ

2
+

o
ϕ),

o
ϕ,

(
o
ϕ

2
+

o
ϕ), . . .}. From Lemma 1, Eq. (14) is satisfied if

the director components of
o
ϕ

2
+

o
ϕ are equal to the

scalar component or
o
ϕ = 0. From (11a) and (11b),

s2 = x2 requires that

s2

(
1 − x2

s2

)(
1 − y2

s2

)
+ s = 2sx

(
1 − y2

s2

)
+ x

and s2 = y2,

s2

(
1 − x2

s2

)(
1 − y2

s2

)
+ s = 2sy

(
1 − x2

s2

)
+ y.

These two equations have to be fulfilled simultane-
ously. Rewrite these equations as

(s2 − x2)(s2 − y2) + s3 = 2sx(s2 − y2) + xs2

(15a)

(s2 − x2)(s2 − y2) + s3 = 2sy(s2 − x2) + ys2.

(15b)

Consider the equality between the RHS of these
equations, 2sx(s2 − y2) + xs2 = 2sy(s2 − x2) + ys2.

This expression can be written as

2(x − y)s2 + 2(x − y)xy + (x − y)s = 0. (16)

Case 1. Nilpotent points with different initial
director components. If x �= y, divide (16) by x − y
to obtain 2s2 + 2xy + s = 0. Then solve for y,

y = −2s2 + s

2x
(17)

and substitute in (15a),

(s2 − x2)
(

s2 − (2s2 + s)2

4x2

)
+ s3

= 2sx
(

s2 − (2s2 + s)2

4x2

)
+ xs2.

This expression can be written in polynomial form
for x,

x4 + (1 + 2s)x3 −
(

2s2 + 2s +
1
4

)
x2

−
(

s2 + s +
1
4

)
2s x +

(
s2 + s +

1
4

)
s2 = 0.

Solutions are x = (−(2s + 1) ± ρ1 ± ρ2)/4, where

ρ1 =
√

2 + 8s + 4s2 and

ρ2 =
√

3 + 24s2 − 2ρ1 − 4s(ρ1 − 5).

All four ± sign combinations produce the four dif-
ferent roots. The corresponding values for y are
obtained from (17). These solutions do not lie
in a plane but are (1D) curves embedded in 3D
space.

Case 2. Nilpotent points with equal initial direc-
tor components. The solutions with equal director
components, x = y substituted in Eq. (15a),

(s2 − x2)2 + s3 = 2sx(s2 − x2) + xs2.

This equation is the projection of the equal direc-
tors nilpotent curve projected onto the s, x plane.
It is interesting to notice that the constant mag-
nitude curves ϕ0|s| = (s2 + x2) in the s, x = y
plane are two ellipses that when projected onto the
s, x plane give two circles. In the x = y plane, as
we have mentioned before x → 1√

2
r. The fourth

2We have not proved that zero is a critical point in the scator quadratic mapping and that it is the only critical point. In this
sense, the proof is incomplete.
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order polynomial in r is

r4 − 2
√

2sr3 − 4s2r2 + 2
√

2(2s3 + s2)r

+ (4s4 + 4s3) = 0. (18)

The roots are

r1 = −
√

2s, r2 =
(√

2s − 4s2

σ
− σ

3

)
,

r3,4 =

(√
2s +

2s2(1 ± i
√

3)
σ

+
(1 ∓ i

√
3)σ

6

)
,

where

σ = 3
1
3 (9

√
2s2 +

√
6(27s4 − 32s6)

1
3 ).

A plot of these roots when they are real is shown
in Fig. 6. The plane x = −y also has equal direc-
tor components’ magnitude. The transformation
r → −r produces curves r5 to r8 that are the neg-
atives of r1 to r4. The eight curves arising from
all roots are plotted together on the right side of
Fig. 6. The root r2 (red in Figs. 5 and 6) is always
real and is coincident in the s < 0 semiplane with
the larger whiskers (see also Fig. 8) of the bound
set coming off from zero. On the positive s side,
the r2, r6 nilpotent roots coincide with two other
large spikes coming out of the confined region. The
roots r3 and r7 cross at r = 0 (yellow curves). If
we evaluate s at r = 0 from (18), either s = 0 or

s = −1. Since P ◦1(
o
ϕ) =

o
ϕ

2
+

o
ϕ is square nilpotent,

from Lemma 3, the points
o
ϕ have periodicity 2. This

result is consistent with the well known periodicity
of points lying on the real axis where the period 2
iteration point is −1. On the s < 0 semispace, the
r3 and r7 curves (magenta curves in Figs. 5 and 6)
delineate a smaller arrow-like head whose tip lies
at −1. The remaining part of these curves together
with the r4 and r8 curves (brown curves in Figs. 5
and 6) delineate the tail of the largest arrow. The
r3, r4 and r7, r8 curves in the s > 0 semispace are
well off the main cardioid region. These curves are
coincident with some of the long range curved spikes
produced in the numerical evaluation.

5.1. Upper bound

The S set, following Douady [Douady & Hubbard,
1984], has been defined by the set of points whose
magnitude does not tend to infinity for any num-
ber of iterations [Eq. (9)]. In order to evaluate the
points in the set numerically, the divergence condi-
tion has to be cast in terms of an upper bound b,

Sa = {o
c ∈ E

1+2 : ∀m ∈ N,∃ b ∈ R, ‖P ◦m
c (0)‖2 ≤ b}.

(19)

In complex dynamics it suffices to consider an
upper bound of 4 because any complex number
with magnitude larger than 2 necessarily diverges

Fig. 6. Curves produced by roots r1 (yellow), r2 (red), r3 (magenta) and r4 (brown) of the square nilpotent scator on the
second iteration. On the right all eight roots are shown.
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as the number of iterations increases. The question
of course arises regarding an upper bound in imag-
inary scator algebra.

Lemma 4. There is no upper bound b to the scator
squared magnitude, such that scators with magni-
tude larger than b diverge under the quadratic iter-
ation in parameter space.

Proof. Suppose that there is an upper bound b so
that for any bound scator point

o
c, ‖P ◦m

c (0)‖2 ≤ b.
The square magnitude of the scator

o
c = P ◦m

c (0)
is at most b. Such scator can be constructed with
components

o
c =

√
b

2 +
√

b
2 ěx +

√
b

2 ěy, so that its

square magnitude is b. Consider a scator
o
B =√

B
2 +

√
B
2 ěx +

√
B
2 ěy with B > b. This scator is

square nilpotent, and thus with preperiod 1 and
thereafter a fixed point with square magnitude B.
Thus it does not diverge. But B > b and therefore
b is not an upper bound. �

It could be possible that considerable differ-
ences arise when the bound set is evaluated with dif-
ferent upper bounds. In Fig. 7, on the left, the scator
square magnitude was compared with ‖P ◦m

c (0)‖2 <
400, that is, the iteration process is suspended if the
scator magnitude is greater than 20. On the right,
the scator square magnitude was compared with

‖P ◦m
c (0)‖2 < 4, the usual bailout condition where

the iteration process is stopped (scator magnitude
greater than 2). The bound set is almost identical
in either case. The outer escape iso-surfaces are dif-
ferent because, in one case, the first iteration is a
circle of radius 20 whereas in the other it is a cir-
cle ten times smaller. The difference between the
rims of these iso-surfaces becomes smaller as they
approach the boundary of the confined set in the
iteration process.

The proof of Lemma 4 relies on the fact that
no upper bound exists for nilpotents. An interesting
plane to look for differences is then the x = y plane
where nilpotent fixed points exist as well as higher
order preperiodic points with larger periodicity.
Figure 8 shows a detailed region of this plane where
the most relevant differences in the bound set were
observed. The bound sets are again quite similar.
Nonetheless, the spikes close to the scalar axis are
somewhat cropped when b = 4 compared with those
obtained when b = 400. It must be stressed that
nilpotent points are always bound and should come
out in white. However, they are easily missed by the
numerical evaluation mesh. Points near to nilpo-
tent values diverge after a few iterations. The set
Sa defined in terms of an upper bound (19), is thus
only approximately correct because it misses some
of the bound points.

Fig. 7. Comparison of sets in the (s;x, 10−7) plane, produced with different upper bound b, ‖P ◦m
c (0)‖2 < 400 on the left and

‖P ◦m
c (0)‖2 < 4 on the right. The numerical estimate of the bound region drawn in white is nonetheless very similar. Some

differences arise in the outer escape iso-surfaces.
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Fig. 8. Comparison of sets in s, r plane, r =
√

2x =
√

2y, produced with different upper bound b, ‖P ◦m
c (0)‖2 ≤ 400 on the

left and ‖P ◦m
c (0)‖2 ≤ 4 on the right. The bound region drawn in white is still quite similar. Some of the spikes are trimmed

when the magnitude limit is set to 4.

5.2. Scator versus Euclidean
magnitude

Definitions of the S set (9) and (19) make decisive
use of the scator magnitude. Recall that in com-
plex algebra, it does not matter whether the com-
parison is performed with the magnitude or either
the real or imaginary parts of the complex number.
All three quantities either diverge or are all bound.
In contrast, the condition is critical in hyperbolic
numbers’ algebra [Pavlov et al., 2009]. The real
and imaginary parts of the hyperbolic number
may increase indefinitely while their square differ-
ence remains bounded [Fernández-Guasti, 2014]. In
imaginary scator algebra, the term involving the
inverse squared of the scalar component x2y2

s2 , plays
a crucial role in establishing the divergent mag-
nitude vicinity of periodic points, as we saw in
Sec. 4. Let us evaluate the relevance of the sca-
tor magnitude form in the numerical evaluation
regarding the so-called “bailout” condition. The
condition ‖P ◦m

c (0)‖2 ≤ b with the scator magnitude
form is s2

m + x2
m + y2

m + x2
my2

m
s2
m

≤ b, while the
condition established with the Euclidean norm is
s2
m + x2

m + y2
m ≤ b. The numerical evaluation of the

bound sets with these two conditions are compared
in Fig. 9. The square imaginary scator metric is
always larger than the Euclidean metric by a factor

of x2
my2

m
s2
m

in 1+2 dimensions. In the first iteration, the
scator is s + xěx + yěy. The Euclidean magnitude
is a sphere and its intersection with the y = 0.02
plane gives a circle. This outermost circle is shaded
in light blue in Fig. 9 (right). On the other hand,
the scator magnitude involves the extra factor x2y2

s2 .
This quantity becomes very large when s is close
to zero while x, y are finite. For this reason, the
outermost contour in Fig. 9 (left) is cleaved at the
s = 0 plane. This cleavage vanishes if the hyper-
plane y is zero (or the hyperplane x is zero) because
then the term involving the inverse squared scalar
component vanishes. Nonetheless, at the next iter-
ation, even the Euclidean magnitude s2

2 + x2
2 + y2

2
contains terms with inverse squared scalar terms,
as may be seen from (11a) and (11b). This contour
corresponds to the next shade of blue in the Fig. 9
(right). It already shows a cleavage at the origin.
However, no cleavage is observed at −1 for the sec-
ond iteration while the scator magnitude in Fig. 9
(left) already has a cleavage at −1 and an addi-
tional cleavage at zero. As higher order iterations
are considered, the contours with the Euclidean
metric seem to lag one behind the scator metric.
At any rate, the scator magnitude is the appropri-
ate metric for scator algebra since it is the one that
is derived from the second order involution of the
algebra.
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Fig. 9. Scator versus Euclidean, s; x plane at hyperplane y = 0.02. Bound set colored in white. Evaluation with scator
magnitude condition (left) and with Euclidean magnitude (right).

6. Symmetries of the S Set in Three
Dimensions

The bound S set in parameter space in E
1+2, is

a set of points in a three-dimensional volume. In
Fig. 10, the image of a three-dimensional repre-
sentation of the S set is shown. This 3D version
was produced with P. Willenius’ extraordinary ren-
dering program [Willenius, 2013, v.2.0.1]. Thirteen
iterations were performed on each point. The col-
oring is due to the value of the components in the
last iteration, the scalar, x and y director values
proportional to red, green and blue respectively
(s13 {red};x13 {green}, y13 {blue}). The image is
extremely intricate and somewhat sensitive to draw-
ing parameters. The M-set silhouette should be vis-
ible but it is not. The reason is two-fold: On the
one hand, there are regions of the boundary sur-
face with x > 0 that overshadow the x = 0 plane.
On the other hand, the mesh in the ěx hypercom-
plex axis is evaluated in 500 layers from −0.97 to
1.79. As we have shown in Sec. 3, it suffices that the
mesh misses the x = 0 plane even by tiny values
(i.e. 10−7) for the set to be considerably deformed.
Some regions in the set, such as the M-set near
the s = 0 plane are extremely thin. When a few
iterations are evaluated, these regions are partially
“caught” within the bound criterion. However, as
the number of iterations increases, if the mesh

points do not intersect the thin bound regions they
become lost. To retain them, a much finer mesh is
required with the concomitant increase in the num-
ber of operations. Figure 10 already involves the

Fig. 10. Three-dimensional rendering of the S set in E
1+2

viewed from the first director hypercomplex axis ěx. A maxi-
mum of 13 iterations per point were performed. The abscissa
represents the scalar (or real) s axis, while the ordinate
depicts the second director hypercomplex axis ěy.
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evaluation of 1.805×109 points (1900×1900×500).
A possibility, in order to visualize features that are
revealed with different resolutions and iterations, is
to superimpose various images with varying degree
of transparency.

The 3D set is squeezed at s = 0. The lack of
bound points in the vicinity of the s = 0 plane is
due to the divergent vicinity Rs described in (7).
Other divergent planes are not clearly seen because
they have curved surfaces, as evinced from those
depicted in Fig. 2, that produce divergent magni-
tude points in the second iteration. On the far left,
there is a hint of a self-similar smaller version of the
larger set.

The two hypercomplex axes are entirely equiv-
alent, thus there is invariance upon interchange of
the x and y variables. Therefore, there must be
symmetry upon reflection in the x, y plane as is
indeed observed. The x hypercomplex director com-
ponent is an odd function of x, thus upon iteration,
the function will be equal but with opposite sign
under the transformation x → −x. An equivalent
reasoning leads to the y → −y symmetry about
the ordinate hypercomplex axis that is observed
in Fig. 10. The transformation s → −s does not
have a well defined parity for the resultant scalar
term s2 + x2 + y2 + x2y2

s2 + s. Thus, the iterated
map is asymmetric with respect to the scalar axis
inversion.

6.1. Visualization and notation

An infinite number of planes can intersect the 3D S
set. The M-set is only one of these many intersec-
tions at either the x = 0 or y = 0 plane. Moreover,
the many Julia sets on the complex plane become
3D sets in E

1+2, each of them with the possibility
of many intersections with 2D planes. The following
notation has been used by the author to label the
sets depicted on different planes:

c2i confined {2} quadratic iterations, (that can be
generalized to cpi for a pth power polynomial or
p → func for other function’s mappings)

• followed by 0 if the initial value of the variable is
set to zero (set depicted in parameter space) or
the initial value (si;xi, yi) at which the constant
is fixed (set depicted in dynamical space).

• followed by the number system: R real, C com-
plex, H hyperbolic, E

1+n
− imaginary or E

1+n
+ real

scators (in 1 + n dimensions), etc.

• followed, if necessary, by the viewpoint or plane
(p0; p1, p2) that is being depicted.

• in 3D renderings, fractal location and viewpoint
are required.

Thus, the Mandelbrot set in the complex plane is
labeled c2i0C, whereas the filled-in Julia set Kc

in the complex plane for the point z = a + ib
is labeled c2i(a, b)C. Since imaginary scators with
only one component are identical to complex num-
bers, the sets c2i0C and c2i0E

1+1
− are equiva-

lent. The S set in parameter space for imaginary
scators in 1 + 2 dimensions presented here,
according with the proposed notation, is labeled
c2i0E

1+2
− . The sets of Figs. 1, 4 and 7 are labeled

c2i0E
1+2
− (s;x, 10−7), while the set of Fig. 9 is labeled

c2i0E
1+2
− (s;x, 10−2). The sets in Figs. 5 and 8 are

labeled c2i0E
1+2
− (s; r/

√
2, r/

√
2). The 3D rendering

of Fig. 10 is labeled c2i0E
1+2
− (0; 0, 0)(0; 6, 0).

7. Conclusions

The S set in E
1+2
− (s;x, y) has been defined in

parameter space in terms of scators whose magni-
tude does not tend to infinity under the quadratic
iteration. Imaginary scator algebra is a finite dimen-
sional algebra with the peculiarity that the scator
product is commutative but does not distribute over
addition. It is equipped with an order parameter
that in addition to the sum of the squared compo-
nents also involves terms with the inverse squared
of the scalar component. The quadratic mapping
has been justified on two grounds: (i) The scator
square function is defined by the scator product
operation of an element with itself, and (ii) if the
argument of the square function is multiplied by a
scalar, the outcome is equivalent to multiplication
by the square of the scalar (Lemma 2). The 3D S
set exhibits a rich and intricate boundary not found
in other higher dimensional generalizations of the
Mandelbrot set.

Evaluation of the S set at a constant but small
value of the second director hypercomplex variable
(y = 10−7) reveals a distribution somewhat sim-
ilar to the M-set but with the main cardiod and
the bulbs squeezed at their centers. To explain
this behavior, the extended scator set E

1+2
− that

includes the points at infinity has been introduced.
Besides the usual points whose components tend
to infinity, this set also contains scator elements
with null scalar and finite director components
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[Rs set, Eqs. (6) and (7)]. This situation moti-
vated the definition of points that have a diver-
gent vicinity (Definition 2.1). Proposition 1, then
established that periodic points with period m have
a vicinity that maps onto the divergent magni-
tude set Rs in the mth iteration. There is no
counterpart to this periodic point–divergent vicin-
ity behavior in two dimensions. It is a consequence
of the non-Euclidean magnitude of scator elements
that becomes relevant only in dimensions higher
than two. These results allow us to explain the
squeezing at the centers of the bulbs where the mth
periodic point is located. Examples have been pre-
sented for the first three iterations.

Square nilpotent elements have been charac-
terized in Lemma 1. Thereafter, we have shown
in Lemma 3, the preperiodicity of points that
are square nilpotent on the mth iteration. This
result has been illustrated with the square nilpotent
curves obtained on the second iteration at the plane
with equal initial director components. With the
preceding results, we have shown in Lemma 4, that
there is no upper bound to the scator magnitude
such that scators with larger magnitude diverge
under the square iteration. Thus, the definition of a
Sa set in terms of an upper bound (19) is not equal
to the strict definition (9), although it is certainly
useful for numerical evaluations.

Some features and elementary symmetries of
the three-dimensional S set have been described.
The symmetry between the two director hypercom-
plex axes produces indistinguishable copies of the
M-set in the s, x and s, y hyperplanes. In contrast,
recall that other algebraic generalizations to higher
dimensions do not exhibit identical properties when
hypercomplex components are interchanged. Real
and complex algebra are embedded in imaginary
scator algebra; R and C are thus subsets of the E

1+2
−

imaginary scator set. Therefore, features of the M-
set such as the period-doubling cascade leading to
the Myrberg–Feigenbaum point or the one to one
correspondence with the bifurcation diagram of the
logistic map are also present in the imaginary sca-
tor set. Different regions of the c2i0E

1+2(s;x, y)
set reveal extraordinary structures that we have
only glimpsed at in an unsystematic fashion.
Self-similarity is present in the 3D structure.
Powerful rendering techniques are required to visu-
alize the intricacies of these higher dimensional
sets.
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