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The quadratic iteration is mapped within a nondistributive imaginary scator algebra in 1 4 2
dimensions. The Mandelbrot set is identically reproduced at two perpendicular planes where only
the scalar and one of the hypercomplex scator director components are present. However, the
bound three-dimensional S set projections change dramatically even for very small departures
from zero of the second hypercomplex plane. The S set exhibits a rich fractal-like boundary
in three dimensions. Periodic points with period m, are shown to be necessarily surrounded by
points that produce a divergent magnitude after m iterations. The scator set comprises square
nilpotent elements that ineluctably belong to the bound set. Points that are square nilpotent on
the mth iteration, have preperiod 1 and period m. Two-dimensional plots are presented to show
some of the main features of the set. A three-dimensional rendering reveals the highly complex

structure of its boundary.

Keywords: 3D bifurcations; hyper-complex numbers; imaginary scators; quadratic iteration;

Mandelbrot set; discrete dynamical systems.

1. Introduction

The iterated quadratic mapping satisfies the recur-
rence relationship z,,1 = agz,zl + a1z, + cg, where
the quantities z,,cg are elements of a module and
ag,a; are elements of a ring. In real and complex
algebra, the module and ring become fields, that
is, sets with commutative group properties under
the addition and product operations. In R, the
quadratic mapping gives rise to the logistic map,
while in C, the bound iterations define the Julia and
Mandelbrot sets in dynamical and parameter space,
respectively. These one- and two-dimensional cases
are prototypical examples that exhibit continued
bifurcation leading to chaos in discrete dynamical
systems. The quadratic mapping can be extended to
higher dimensions using other algebraic structures

such as quaternions or Clifford algebras [Helmstet-
ter & Micali, 2008], matrix algebras [Nascimento-
Baptista et al., 2012], nonassociative algebras, etc.
Some of the field properties are necessarily lost in
the generalization to higher dimensions. For exam-
ple, quaternions and matrix algebras are no longer
commutative and octonions are neither commuta-
tive nor associative. In some of these alternatives,
such as hyperbolic complex numbers, the structure
is no longer a division algebra, that is, not all ele-
ments have an inverse. Nonetheless, these algebraic
structures are well suited for some physical scenar-
ios such as Minkowski space-time [Catoni et al.,
2008].

There have been several efforts to extend two-
dimensional fractal structures to higher dimensions.

1630002-1
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For example, four-dimensional quaternion general-
izations of the Mandelbrot and Julia sets [Gomatam
et al., 1995]. However, these mappings yield little
new beyond the complex case [Bedding & Briggs,
1995]. On the other hand, there has been much
less work in three-dimensional algebras compared
with four or eight dimensions. The reason being
that emphasis has been laid on division or normed
algebras. The only possible division algebra, up
to isomorphism, in dimension higher than two is
four-dimensional (Frobenius theorem). However, if
divisors of zero are permitted, the scope becomes
much broader. There are some isolated proposals of
three-dimensional number systems such as ternary
algebra [Cheng & Tan, 2007| and triplex algebra
[White & Nylander, 2009; Rama & Mishra, 2011]
or variations of them [Bonzini, 2010] that render
interesting bound sets under continued iteration.
Visualizations of some of these sets, notably quasi-
Fuschian fractals [Araki, 2006] and the mandel-
bulb, have received wide dissemination [Aron, 2009;
Sanderson, 2009]. The visualization of fractal geom-
etry in three dimensions is quite challenging and
has become a specialized study of programmers
and developers. Methods originated in geographic
visualization, architecture and digital animation are
proving quite useful to render these rather compli-
cated structures [Blackledge, 2002].

In the present approach, the three-dimensional
product and addition operations of imaginary sca-
tor algebra are invoked to appraise the quadratic
mapping. The algebra is akin to the subset of par-
avectors in Clifford algebras where numbers contain
a scalar and a vector part. However, it differs from
Cliffordian structures among other things, because
although it is equipped with an order parameter,
this quantity does not have an associated bilin-
ear form. Scator elements can be viewed as hyper-
complex numbers in 1 4+ n dimensions. They have
n copies of the complex numbers set embedded
in the higher dimensional set, all sharing the real
part of the hypercomplex number. If all but one
of the scator director components is nonvanishing,
the complex plane is recovered [Ferndndez-Guasti &
Zaldivar, 2013a]. Imaginary scator algebra is a finite
dimensional algebra over the reals with a multiplica-
tive identity. It is thus a hypercomplex algebra in
the sense of Kantor and Solodovnikov except for the
distributivity condition that is commonly requested

Noverset{o} in IMTRX lore.

P ey merem s m—o - P

[Kantor & Solodovnikov, 1989]. In general, the
scator product does not distribute over addition.
However, the scator product is commutative and
all elements in the scator set have an inverse, except
zero. Nonetheless, scator algebra is no longer a divi-
sion algebra because it has zero products of nonzero
factors. In particular, nilpotent elements exist when
the two factors are equal. Nonetheless, as we shall
presently see, this restriction does not prevent the
imaginary scator number system from generating
consistent iterated mappings.

The structure of this manuscript is as follows:
In Sec. 2, the necessary elements of imaginary scator
algebra in 142 dimensions are introduced. Empha-
sis is laid on the squaring function and the nilpotent
conditions. The quadratic iteration with imaginary
scator numbers is presented in Sec. 3. In Sec. 4,
one of the salient features of the 3D fractal is dis-
cussed: Periodic points have a vicinity that produce
a scator with divergent magnitude. Points that arc
eventually square nilpotent are discussed in Sec. 5.
Section 5.1 establishes the lack of an upper limit for
the scator magnitude bound points. The elemen-
tary symmetries of the three-dimensional set are
discussed in Sec. 6. Conclusions are drawn in the
last section.

2. Imaginary Scators

Imaginary scator elements, sometimes referred to as
elliptic scators, in 1 4+ 2 dimensions can be written

in terms of three real numbers 909 = (s;z,v), s, 7,
y € R. The first component, named the scalar com-
ponent, stands on a diflerent ground from other
components. To stress this fact, it is separated
by a semi-colon from the rest. Subsequent compo-
nents are named director components. They are not
referred to as a “vector part” because vectors are
not a subset of the scator set [Ferndndez-Guasti &
Zaldivar, 2013b|. Scator elements are decorated
with an oval placed overhead.! Scators can be repre-

sented in terms of a basis, 909 = s+ xzé; +ye,, where
€., &, ¢ R. Addition of scators is defined by the sum
of each component o+ ,4% = (ap + a18; + age,) +
(b() + b1é, + bgéy) = (ao + bo) + (a1 + b]), e, +
(ag + by)é,. The scator set is a commutative group
under addition. The product operation of scators

1630002-2
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Imaginary Scators and Quadratic Mappings in Three Dimensions

& = (ap; a1, a2), B = (bo; by, by), is defined by

&8 = agby (1“0 (1 — %2b2
agbg (Lnb[]

19D
+ (a0b1 + b0a1) <l .. 5'2) €,
apbyp

-+ (aobg + boag) <1 —_ ”‘—lfj—l) éy. (1)
ﬂ.[_]!)(_]

This definition departs from the real scator prod-
uct definition and establishes a different topology
[Fernandez-Guasti & Zaldivar, 2013a). This state
of affairs is analogous to the differences that arise
between complex algebra (i = —1) and hyperbolic
numbers algebra (72 = 1) due to the product defini-
tion of two imaginary units as minus one or one
respectively. The product operation of two equal
imaginary scators, that is, the square of an imagi-
nary scator ¢ = (s;z,y) is then

02
Y = (s+zé; + yéy)2

s (303$<>a y<>)

= 8o + xoéx + yoéy,

. 2ya®\
4 28y — &,.
s

2
Ify=0, o = (s+zéz)? = (52 —x2) 4 (2s2)é,, or, if
2

o
z=01in(2), ¢ = (s+y&)* = (s* — ) + (2sy)&y,
we recover the complex algebra product. From these

last two equations if s = 0, and z = 1 or y =
1 respectively, the square of the hyper imaginary
units are 2 = —1 and é% = —1. An inverted hat or

check is used to decorate unit director components
in imaginary scators versus the hat used to label
them in real scator algebra. From the symmetry of
the x and y variables, it is clear that the two hyper
imaginary axes are equivalent. Two copies of the
complex plane are embedded in 1+ 2 imaginary sca-
tor algebra, sharing the scalar axis and having two
distinct but equivalent hyper complex axes. From
the product of two different scators (1), it can be
seen that (s + z€,)(s + ye,) = s? + své, + syé,.

If s=0and z =y = 1, then &,&, = 0. Thus, due to
the addition and product properties, the two hyper-
complex axes can be visualized as orthogonal axes.
However, due to the lack of distributivity, the rela-
tionships €,€, = —d;, are not sufficient to establish
the product operation rules.

To insure consistency, different component lim-
its are taken in succession, evaluated first for the
director components variables in any order, and
thereafter, evaluating the scalar component limit.
For example, if x = 0 and s = 0, the limit on the
director component variable  — 0 is taken first
So + To€s + Yoy = (s? — y?) + 2syé,, and then
the scalar variable limit s — 0 is evaluated, thus
So + L€y + Yoy = —y2. This criterion is extended
to all other functional relationships.

The conjugate of a scator 9% = s+ xzé; + yé,
is defined by the negative of the director com-
ponents, while the scalar component remains

*
unchanged c,oo = s — x&; — y¢&,. The square mag-
nitude of a scator ||@||? is equal to the scator times
its conjugate

2,2
* x
1617 =60 = * +2* +y2+ 2= (3)
This quantity is real and can thus be used as an
order parameter. It will be employed to establish
the bound criterion in the quadratic mapping. The

R . . o .
multiplicative inverse of ¢ is

o—1 1 0%

= - 9 . 4
© , gz yg ¥ ()
s 1+§ 1+;§

From the above expression, \,00 is always invertible
except if all components are zero or if s = 0 when
zy # 0.

The subspace E'*2 < R3, where the scator
magnitude (3) is finite, is defined by

E1+2:{$:3+xéx+yéy:S7é0ifxay7éo}:
(5)

that is, the scalar component should not be zero
if the two director components are finite. Let the
extended set E'*2 be defined in a similar fashion as
the extended complex plane but adding one more
dimension; That is, the extended scator set

E'? =B U {p: ||¢]* = oo} = R* U {oc},
(6)

1630002-3
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involves three dimensions and includes the points at
infinity. The points at infinity are obtained by let-
ting any of the scator components tend to infinity,
that is, @] — oo if s — oo and/or £ — oo and/or
y — oo. Extensions of complex algebra to higher
dimensions equipped with a quadratic norm, impose
this type of condition. Namely, the points at infinity
require that at least one of the components tends
to infinity. However, there is also another possibility
in scator algebra. If s becomes very small while z,y
are both different from zero, the magnitude of the
scator, from the magnitude definition (3), becomes
very large. There is then a set of points on the z,y
plane whose magnitude approaches infinity

Ry =<{s+zé,+ye, cE™2:24£0,y+#0,
Y

(s, )l| — oo} ")

This set, also present in real scator algebra, is
depicted in Fig. 1 of reference [Fernandez-Guasti,
2014]. It includes all points of the plane s = 0,
except for the two, on axis straight lines.

Definition 2.1. The point sq + zo€; -+ yo€, has
a divergent wvicinity if there exists a set of points
(s0+0ds)+ (o +dx)é, + (yo +dy)é, for infinitesimal
ds,0z,0y € R, whose magnitude tends to infinity
[l(s0 + 65) + (o + dz)éz + (yo + dy)é, || — oco.

The point (0;0,0) has a divergent vicinity since the
magnitude of (0;0 4 dx,0 + dy) is infinite. Further-
more, all points with infinitesimal scalar and arbi-
trary nonvanishing director components (ds;z,y)
have a divergent vicinity since the magnitude of
points (6s — ds;x + dx,y + dy) is infinite. The only
points with finite magnitude within the z,y plane
at s = 0 are those lying on the axes lines z = 0 or
y = 0.

Lemma 1. The only nontrivial square nilpotent ele-
ments i 1+ 2 dimensional imaginary scator alge-
bra are elements whose three components have equal
absolute value.

Proof. A scator element is zero if and only if, all
o @
its components are zero, i.e. ¥ =0 < ¢ = (0;0,0).

on
A nonzero element is nilpotent if ¥ = 0 for some
n € N. In particular, a scator element is square

02
nilpotent if ¥ = (so; 20, %) = (0;0,0). The square
function components (2), can be factored as

B e A P

2
(o}
P =86+ To€z + Yoy

2 2 2
2 z Y YN L
2\ |
+ 25y 1_3_2 éy. (8)

Since all scator compounents of the squared func-
tion must be zero, then the required conditions are
2?2 = s and y? = s The absolute value of the
director components have to be equal to the scalar

component. H

Corollary 2.1. The square of an invertible element
15 tnwertible if it is not square nilpotent.

Proof. All imaginary scator elements in E!*? have
inverse except zero. The square of a nonzero element
is then invertible if it is different from zero. M

3. Iterated Quadratic Mapping

2
Consider the family of maps P, : @ <0,00 + ¢ from
E*2 to E*2, where the variable s% and the con-
stant ¢ are now scator elements. P, is a quadratic
mapping in the sense that it involves the evaluation
of the square function plus a constant. The square
function ¢q, is defined by the product of two arbi-
trary elements in the algebra when the two [actors
are equal. It is also a quadratic mapping over R in
the following sense

g 2
Lemma 2. The square function mapping q: @ +— 9090

from B2 to B2 satisfies q(A@) = A2¢(9), A € R.

Proof. A scalar A € R is an imaginary scator
with all director components equal to zero, i.e.

A=A+ 0é; + 0e,, A€ B2, That is, real algebra
is embedded in scator algebra. Although in general,
the product does not distribute over addition, in
the particular case of a scalar times an arbitrary
scator, the scalar does distribute over the scator
components [Ferndndez-Guasti & Zaldivar, 2013b].
This result can be seen from (1), by letting ag = A,

a1 = ay = 0. Therefore, /\4,09 = As + Az, + Aye, for
all A € R and for all & in E'*2. From (8),

)\2%'2 /\21.2
o 2.2 ¥
ahp) = As (1 - /\232> (1 - ,\‘2.92>

1630002-4
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Imaginary Scators and Quadratic Mappings in Three Dimensions

)\2?/2 §
+ 2)\5/\.’1) (1 — W) Cr

A2\ |

Since A2 is a scalar, it can be factored from the
above scator components

2 2
AD) = A2 21_x_ 1_y_
q(Ap) [8 > 3
2\ 2\
+2sx<1~z—2)ez+23y<l—?>ey}

Therefore g(Ap) = A2q(¢). M

In abstract algebra, it is customary to intro-
duce the associated mapping b, : E*? x E1*2 —

E2 defined by b,(%,8) = a(& + 8) — ¢(&) —

o
q(f). Some authors [Helmstetter & Micali, 2008,
Ch. 2| requested that the associated mapping
should also be R bilinear in a quadratic mapping.
This criterion is not fulfilled in scator algebra,
o o (o] (2]

be(A&, B) # Abg(&,8) and by(&, A\3) # Aby(&, B).
The Mandelbrot-like set is obtained by fixing the
initial point '5?30 = (0;0,0) and varying the parame-
ter ¢. Bound points obtained by iteration of this pro-
cedure comprise the corresponding M-set in E!*2.
The confined set in parameter space for imaginary
scators in 1 4+ 2 dimensions is given by

S={ceE"*? . mecN,|P™0)| » o}, (9)

where P, : P 1o 5%2 + ¢, P°™ denotes the m-fold
composition P;™ = P.o FP.o---0 P, of the function
P, with itself and the 0 argument in P2™(0) means
that the function is initially evaluated at zero. A
two-dimensional rendering of this set at a constant
second hyper imaginary plane is shown in Fig. 1.
The picture is reminiscent of the Mandelbrot set
although the main cardioid as well as the bulbs
are squeezed. Similar maps are obtained even for
tiny departures from zero in the second hyperplane.
Values as low as y = 10740 already show this squeez-
ing behavior. At these very small coordinate val-
ues, carc has to be taken regarding the precision
of the numerical calculations. The iterated function
satisfies the recurrence relationship §09m+1 = 909m + 8,
where the subindex stands for the iteration number.

-8 -z =06 (i 06
Fig. 1. Two-dimensional rendering of the S set in E'T?
(s;, 10_7). The abscissa corresponds to the scalar (or real)
s axis, —1.8 < s < 0.6, while the ordinate depicts a director
component, say the hyper imaginary = axis (-1 < z < 1).
The other hyper imaginary director component (y axis), is
coming out of the page. The S set is evaluated at a constant
y = 1077 hyperplane.

o ~ ~ . . .
For ¢ = s+xeé, +ye,, the quadratic iteration recur-
rence relationship for the scalar component is

2 2
T
Sm41 = 82, (1 — STm> < - %”) +s (10a)

m m

and for the director components, the recurrence
relationships are

2
Tint1 = 2smxm< - %n) + (10b)

m

2
T
Yl = 28mYm <1 - STm> + 9. (10c)

m

4. Divergent Magnitude Set in the
Vicinity of Periodic Points

4.1.

Periodicity is defined in an analogous fashion as in
complex dynamics [Blanchard, 1984, p. 88].

Pertodic points

Definition 4.1. If 9-09m = 9090 for some m, then 9090 is
a periodic point and O+('$?g) is a periodic orbit. If
m is the first positive integer such that ‘»Oﬂm = ;)90,
then m is the period of the orbit. A point :9 is even-
tually periodic if, for some m, Pom(#%) is a periodic

o
point. The point @ is preperiodic if it is eventually
periodic but not periodic.

1630002-5
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If the period of an orbit is one, 9090 is a fixed
point. The origin 9090 = 80 = 0+ 0e; + 0ey is
clearly a fixed point in the scator quadratic map-
ping. In parameter space, the initial point is always

‘%o = 0 + 0¢&; + 0e,. The first iteration gives the

additive constant 9%1 =¢ =s+ rér +yey. If s =0
and z # 0,y # 0, the scator magnitude becomes
infinite. The divergent Ry plane is thus obtained
and is depicted as a vertical line in the s,z plane
for constant y = 1077, as shown in Fig. 3. The

590 = 80: 0 + 0é, + 0é, fixed point thus has a
divergent vicinity. This Ry plane (in yellow) pro-
duces a squeezing of the M-set main cardioid
illustrated in Fig. 4.

4.2. Second iteration

The second iteration for the scalar is

2 2
52 :..;2(1—?—2) <1—%> +s  (11a)

and for the director components

y? &2
To = 23x<1 — 5_2) +z, Y= 2sy<1 - 3—2) + 1.

(11b)

The cycle 2 periodic points in parameter space
impose 5%2 = 9%0 = (. The simultaneous equations
that ought to be fulfilled are then sg = 0, o = 0
and yp = 0. If # = y = 0, from (11a), s = 0 or
s=—1.Ifz =0, y # 0, from the second equation
in (11b), s = —3; Substitution of z = 0 in (11a)
gives y = +vs?2 + s and from the previous result
Yy = i%, where i? = —1 (z # 0,y = 0 gives an
analogous result for z). If z # 0, y # 0, from (11b),
y = £y/s?+5/2 and z = +/s% + s/2. Substitu-
tion of these expressions in (11a) gives s = —%, and
this result back in the previous two equations gives
T=y= :l:%. The two solutions with real coefficients
are ¢ = 0+ 0e; + Oe, and ¢ o= -1+ 0e; + Oe,,.
The other eight possibilities have complex solutions:
— 1+ Jie, £ fiey, —5 & Lie, + 08y, —1 + O,
%z’éy, but the scator coefficients must, be real. There-
fore, there are no period two points lying outside the
scalar axis.

Due to s terms in the denominators, all three
components in iteration (11a)-(11b) become large
for nonzero director components if the scalar
becomes simall. Consider the points that are on the

A e et St ot et Nt

second iteration map to the R, set whose magni-
tude tends to infinity. That is, points where the
scalar component becomes zero while the director
components are nonzero xg # 0, yo # 0. Only the
equation for the scalar component sy equal zero is
imposed,

st~ (22 + 2+ 2% =0, (12)

Since there are three independent variables, this
equation represents a 2D surface embedded in 3D
space. Points on this surface, depicted in Fig. 2,
yield infinite magnitude scators on the second iter-
ation provided that zq,y2 # 0. The points within
this surface clearly do not belong to the S set. If
one of the director variables is fixed, for example,
when a plane with constant director component is
analyzed, their intersection produces a (1D) curve
embedded in 3D space. Consider a plane where
y < s,z. Equation (12) can be approximated to
5?2 — 2% 4+ 5 =~ 0. The terms involving s can be col-
lected as s?+s = (s+ )%~ 1. The equation is then
(s + %)2 —z? = %, a rectangular hyperbola with
center at (—3;0,0) and focii at —1/2 + 1/v/2. This
hyperbola intersects the scalar axis at 0 and —1 as
shown on the right side of the middle row in Fig. 3.
However, as we saw earlier, there is a periodic point

Fig. 2, Points on these surfaces produce a divergent magni-
tude on the second iteration.

1630002-6
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21

=2

Fig. 3. Polynomials (from top to bottom), s =0, s> — 2 + 5 = 0 and z* — (65> + 65 + Dz? + (s? +2s% + 2+ s) = 0. Plots
of 22 as a function of s are shown on the LHS. The corresponding plots for « as a function of s are shown on the RHS. Along
these curves, the scator magnitude becomes infinite in the first (top row), second (middle) or third (bottom) iteration.

at ¢ = —1408, +0¢&,. Furthermore, from real anal-
ysis we know that there is a period two fixed point
at —1 with its concomitant basin of attraction.
Consider a point in the vicinity of —1, s =
—1 + ds, where |ds| < 1. Evaluate the polyno-
mial (12) with s — =1+ ds, z — dz, y — dy
recalling that s" = (—=1)" + (= 1)""Inds + - - -,

daldy? — (602 + 8y?)
1 — 2(0a? + dy?)

5 =

If 022, 6y% < 1, then ds ~ — (022 + 032). The point
848 = —(1+062% + 6y®) + 678, + by, lies in
the vicinity of the point ¢ = —1+0¢; + 0e,. The
quadratic iteration of this point evaluated to low-
est order in dz,dy is Po(—(1 4 672 + 8/2) + dxé, +
dye,) = 0— dxé, — dye,, since 52 = 14 2022 + 2692
and thus s — 622 — dy2 + s ~ 0. But this 0 — dzeé, —
dyeé, point has an infinite magnitude. Therefore,
the period two point —1 + 0¢é, + 0e, has a vicinity

1630002-7
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— (14622 + 6y?) + dzé, + dyé, that maps to R; on
the second iteration. The hyperbola (drawn in red)
leading to infinite magnitude in the second itera-
tion is superimposed on the bound set in Fig. 4. The
main cardioid is squeezed at the origin due to the
right branch of the hyperbola. Since 0 + 0é, + 0&,
is a solution to s, = 0 for all n, there is always a
curve intersecting the scalar axis at the origin. The
largest bulb to its left, is also squeezed at its center
located at —1, the period 2 point where the left
branch of the hyperbola crosses the scalar axis.

4.3. Third iteration

The cycle 3 periodic points in parameter space

o}
impose ¥3 = 0. The simultaneous equations that]

ought to be fulfilled are then s3 = 0, z3 = 0
and y3 = 0. Analytic solutions for the general
case are not possible because eight order polyno-
mials are now involved. Dropping out a director
component lowers by 2 the single variable polyno-
mial order. The equation for the scalar component
s3 = 0 in a plane where y <« s,z is approxi-
mately s3 — x3 + s ~ 0. With the aid of (11a)-
(11b), this expression can be written in standard
polynomial form for the hypercomplex director
variable x,

z — (6% + 65 + 1)z?
+ (8" +25% + 52 +5) = 0. (13)

The four solutions to this equation, plotted in the
lower row of Fig. 3, are

N V1 + 65 + 652 + /1 + 8s + 4452 + 6453 + 3257
xr = .

V2

Two solutions intersect the scalar axis at 0 and —1.7548 ..., the latter being the location of the period 3
point on the real axis. The other two solutions do not intersect the scalar axis. The off axis period 3 points
in the s,z plane are approximately —0.122 4+ 0.744¢é,. Points that belong to the curves

. V1 + 65+ 652+ /1 + 85 + 4452 + 6453 | 3251 _

V2

generate divergent magnitude scators on the third
iteration. In Fig. 4, these curves are superimposed
on the S set evaluated at the hyperplane dy = 10~7.
The left most curve (in green) intersects the scalar
axis close to —1.75 where the center of the main
cardioid of the largest copy of the M-set is located
as can be guessed from Fig. 4. The remaining
two solutions (in magenta) intersect the off scalar
axis period three bulbs at their centers (—0.122 +
0.744é, ) producing a skew squeezing. If dy is strictly
zero, these curves no longer produce divergent mag-
nitudes (thus not present in the M-set).

All bulbs suffer the same fate, a squeezing
at their centers where the mth periodic point is
located. There are surfaces similar to those depicted
in Fig. 2 for higher order polynomials. They inter-
sect each of the m centers and produce infinite
magnitude scators after the mth iteration. At the
intersection of these surfaces with a plane, curves
similar to those depicted in Fig. 4 are produced.

Let us generalize these assertions in the follow-
ing proposition:

Proposition 1. For every m periodic scator poini
under the quadratic iteration mapping from E'*?

é; + oye,,

Fig. 4. Divergent magnitude curves: one iteration (yellow),
two iterations (red), three iterations, intersecting the scalar
axis (green) and ofl axis (imagenta). There are lour hyper-
planes that produce this same set: y = +6 and z = +8,
where § =107 7.

1630002-8
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Imaginary Scators and Quadratic Mappings in Three Dimensions

to B2 in parameter space, there is a vicinity that
produces a scator with divergent magnitude in the
mth iteration.

Proof.  Pertodic points with period m require that
copm = 0, that is, the point represented by the sca-
tor 9091 = ¢ returns to zero after m iterations. The
periodicity condition 909m = 8m + Tm€s + Ym€y =
0 + 0é; + 0é,, involves three equations in 1 + 2
dimensions. Namely s,, = 0, z,, = 0 and y,, = 0.
Let the solution to these three equations in terms
of the initial variables be ¢; = & = s(m,rs) + z{m,
T2)€z + y(m,ry)€,, where the notation s(m,rs)
refers to the values of s for the mth iteration and
rs < m is the rsth root. The notation for the direc-
tor coefficients z(m,ry),y(m,ry) follow a similar
convention. The solutions have been labeled with
different subindexes in r because any of the m> com-
binations between them is possible.

A divergent magnitude is obtained when the
scalar component of the mth iteration scator is
zero, while the director components do not vanish.
From the conjugation involution, the equation can

*
be written as s, = %(S%m + <O.0m) = 0. Consider an
arbitrarily small increment of any of the solutions,

say 9091 —|—§ = ¢ = s(m,7s) + 65+ (z(m, re)+0x)éy+
(y(m,ry) + 6y)é&y, such that s, = %(fﬂm + <OP;) =0
but z,, # 0 and y,, # 0. Points 9%1 + 3 are in the
neighborhood of ioP]. However, at the mth iteration,

these points produce a scator 0+, &5 + ym €, with
divergent magnitude. W

5. Nilpotent Points Iteration

Square nilpotent points are invariant points under
2

the quadratic iteration, since <0,0 = 0, and the map-
ping P((Op) is then an identity Q9 + o = .
The critical orbit of a square nilpotent point g% is
{O,cfo,aop,...}. It is thus a preperiodic point with
preperiod 1 and period 1. It is labeled as M,
in the notation of Misiurewicz points. It is then a
preperiodic point that after one preperiod becomes
a fixed point. From Lemma 1, nilpotent points
n,oo = +s £ se; £ se, lie on the intersection of the
s = £z and s = =ty planes, tilted at £45° with
respect to the s axis. The projection of a point in
the s,z plane onto a plane containing the s axis
but inclined by # in the z,y direction measured

from the z axis is © = rcosf and y = rsinf. For
aplane z =y, x = rcos(§) = %r =rsin(§) = y.
The nilpotent lines s = £z = 4y in the s,r plane

are thus s = i%r. These two straight lines lie

at T = arctan(+v2) =~ +54.7° measured from
the s axis, they are depicted in yellow in Fig. 5.
These lines are superimposed over the confined S
set. drawn in white. Coloring is somewhat different
from previous renderings to enhance the back-
ground. These lines are coincident with relevant
features of the S set. On the negative side of the
s axis, the largest bound region terminates at these
lines that delineates an arrow-like head. On the pos-
itive s side, the nilpotent straight lines coincide with
two of the large spikes coming out of the confined
region. These lines should be in white since they are
points within the bound set. However, they do not
appear in the numerical iterative process because
tiny departures in the rounding from /2 produce

Fig. 5. Confined quadratic iteration in parameter space and
square nilpotent curves for the first two iterations at the s
versus £ = y plane. Square nilpotent points in yellow. Points

2
such that ;)9 + \,09 is square nilpotent shown in red, magenta
and brown. Dot dashed lines are drawn to see the underlying
set, points.

1630002-9
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large magnitude values. The magnitude of nilpo-
tent points is invariant under the quadratic map-
. O2 [0} o
ping [l + ol = [lofl =
o}
equal to ||¢| = 2|s| in 1 + 2 dimensions.

|£s £ se; + s, and is

Lemma 3. Ifm is the first positive integer such that
P™(0) is square nilpotent, the point ¢ = ¢ is prepe-
riodic with preperiod 1 and period m in parameter
space.

Proof. The critical point for the quadratic mapping
is zero? and is always the initial point in parame-
ter space @y = 0. The first iteration of the func-

tion is PSY(0) = ¢ = ¢, since PS™(0) is square
nilpotent, PSL(PI™(0)) = ¢ = ¢ = P2H(0). Then
petm(0) = P2Y(0) and thus My, = ¢ = ¢ :
PLET(0) = P2Y(0). l

Consider now points such that 909 is not square

2
nilpotent but ;)9 + goo is square nilpotent, that is

(¢ +¢)? =0 (14)
From Lemma 3, the preperiodicity is 1 and the
periodicify 2. The critical orbit is {0, @, (9002 + @), @,
(to,o2 +),...}. From Lemma 1, Eq. (14) is satisfied if
the director components of (,0 + (p are equal to the

scalar component or ¢ = 0. From (11a) and (11b),
Sy = xo requires that

2 2 2
<1_33_2) <1—y—2)+s:25x<1—y—>+x
5 s 52

and sg = ¥9,

2 2 2
| T
<1—§—2> <1—i—)+s—2sy<1——)+y

These two equations have to be fulfilled simultane-
ously. Rewrite these equations as

(s —zH)(s? —y?) + % = 2sx(s? — y?) 4 zs?

(15a)
(s — 2%)(s? — 4?) + 53 = 25y(s? — 2?) + ys®.
(15b)

Consider the equality between the RHS of these
equations, 23:):(52 — yz) +oxs? = 25y(32 332) n ysQ.

R et O T P

This expression can be written as
2(z — y)s* +2(z — y)zy + (z —y)s = 0. (16)

Case 1. Nilpotent points with different initial
director components. If z # vy, divide (16) by z —y
to obtain 2s? 4 2zy 4+ s = 0. Then solve for y,

2s% + s
2z

Y= — (17)

and substitute in (15a),

22 2
(s2 — 22) <32— ( 54;‘23) >+S3

2 2 2
= 2sx <32 - %) + s

This expression can be written in polynomial form
for x,

1
zt + (14 25)2% - (252 + 25+ Z) z?

1 1
«<32—|—s+z) 2sx + <32+s+1)32=0.

Solutions are z = (—(2s5 + 1) £ p1 + p2)/4, where

P =V2+8s+4s® and

p2 =3+ 2452 — 2p, — 4s(p, — 5).

All four + sign combinations produce the four dif-
ferent roots. The corresponding values for y are
obtained from (17). These solutions do not lie
in a plane but are (1D) curves embedded in 3D
space.

Case 2. Nilpotent points with equal initial direc-
tor components. The solutions with equal director
components, z = y substituted in Eq. (15a),

(s* — 22)? + §* = 2s2(s? — 22) + @s?,
This equation is the projection of the equal direc-
tors nilpotent curve projected onto the s,z plane.
It is interesting because the constant magnitude
curve in the s,z = ¥ plane are two ellipses that
projected onto the s, x plane give two circles. In the

x = y plane, as we have mentioned before x — %r.

2We have not proved that zero is a critical point in the scator quadratic mapping and that it is the only critical point. In this

sense, the proof is incomplete.

1630002-10
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The fourth order polynomial in r is
4+ 2v2sr3 — 2582 — 2v/2(25° + $2)r
+ (481 4 45%) = 0. (18)

The roots are

42
r = —v2s, r2=< 2s—i—z>,
o 3

3.4
' G

<\@s+ 2s%(1+iv3)  (LF '.i'\/i'—i)d)r

where
o =33(9v2s2 + V6(275% — 3255)3).

A plot of these roots when they are real is shown
in Fig. 6. The plane x = —y also has equal direc-
tor components’ magnitude. The transformation
r — —r produces curves 15 to rg that are the neg-
atives of 71 to r4. The eight curves arising from
all roots are plotted together on the right side of
Fig. 6. The root 73 (red in Figs. 5 and 6) is always
real and is coincident in the s < 0 semi plane with
the larger whiskers (see also Fig. 8) of the bound
set coming off from zero. On the positive s side,
the r9,7¢ nilpotent roots coincide with two other
large spikes coming out of the confined region. The
roots r3 and 77 cross at r = 0 (yellow curves). If
we evaluate s at r = 0 from (18), either s = 0 or

) SR ———— PR DTS T
1

e e R 2 3

Fig. 6.
iteration. On the right all eight roots are shown.

s = —1. Since P°!(p) = 9092 + ¢ is square nilpotent,
from Lemma 3, the points c,oo have periodicity 2. This
result is consistent with the well known periodicity
of points lying on the real axis where the period 2
iteration point is —1. On the s < 0 semi space, the
r3 and 77 curves (magenta curves in Figs. 5 and 6)
delineate a smaller arrow-like head whose tip lies
at —1. The remaining part of these curves together
with the r4 and rg curves (brown curves in Figs. 5
and 6) delineate the tail of the largest arrow. The
r3, T4 and r7,rg curves in the s > 0 semi space are
well off the main cardioid region. These curves are
coincident with some of the long range curved spikes
produced in the numerical evaluation.

5.1. Upper bound

The S set, following Douady [Douady & Hubbard,
1984], has been defined by the set of points whose
magnitude does not tend to infinity for any num-
ber of iterations [Eq. (9)]. In order to evaluate the
points in the set numerically, the divergence condi-
tion has to be cast in terms of an upper bound b,

S, = {c € EM*? . vm € N,4b € R, | PT™(0) | < b}.
(19)
In complex dynamics it suflices to consider an

upper bound of 4 because any complex number
with magnitude larger than 2 necessarily diverges

L]

21

-4

= R i 23

Curves produced by roots 1 (yellow), ro (red), r3 (magenta), r4 (brown) of the square nilpotent scator on the second

1630002-11
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as the number of iterations increases. The question
of course arises regarding an upper bound in imag-
inary scator algebra.

Lemma 4. There is no upper bound b to the scator
squared magnitude, such that scators with magni-
tude larger than b diverge under the quadratic iter-
ation in parameter space.

Proof. Suppose that there is an upper bound b so
that for any bound scator point ¢, | P™(0)||2 < b.

The square magnitude of the scator ¢ = P™(0)
is at most b. Such scator can be constructed with

components ¢ = ‘/TE + */Tgéz + \/TEéy, so that its
o

square magnitude is b. Consider a scator B =
VB | YBg 4 YBg with B > b. This scator is
square nilpotent, and thus with preperiod 1 and
thereafter a fixed point with square magnitude B.
Thus it does not diverge. But B > b and therefore

b is not an upper bound. W

It could be possible that considerable differ-
ences arise when the bound set is evaluated with dif-
ferent upper bounds. In Fig. 7, on the left, the scator
square magnitude was compared with || Po™(0)|? <
400, that is, the iteration process is suspended if the
scator magnitude is greater than 20. On the right,
the scator square magnitude was compared with

I e T e s L s

| P2™(0)]|* < 4, the usual bailout condition where
the iteration process is stopped (scator magnitude
greater than 2). The bound set is almost identical
in either case. The outer iso escape surfaces are dif-
ferent because, in one case, the first iteration is a
circle of radius 20 whereas in the other it is a cir-
cle ten times smaller. The difference between the
rims of these iso surfaces becomes smaller as they
approach the boundary of the confined set in the
iteration process.

The proof of Lemma 4 relies on the fact that
no upper bound exists for nilpotents. An interesting
plane to look for differences is then the z = y plane
where nilpotent fixed points exist as well as higher
order preperiodic points with larger periodicity.
Iigure 8 shows a detailed region of this plane where
the most relevant differences in the bound set were
observed. The bound sets are again quite similar.
Nonetheless, the spikes close to the scalar axis are
somewhat cropped when b = 4 compared with those
obtained when b = 400. It must be stressed that
nilpotent points are always bound and should come
out in white. Ilowever, they are easily missed by the
numerical evaluation mesh. Points near to nilpo-
tent values diverge after a few iterations. The set
S, defined in terms of an upper bound (19), is thus
only approximately correct because it misses some
of the bound points.

1_5‘-

=151 . N i r 1
2 -125 -05 1= 1.

Fig. 7. Comparison of sets in the (s;2,1077) planc, produced with different upper bound b, | P2 (0)||% < 400 on the left and
lP2™(0)|> < 4 on the right. The numerical estimate of the bound region drawn in white is nonetheless very similar. Some

differences arise in the outer escape iso-surfaces.

1630002-12
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Fig. 8. Comparison of sets in s,7 plane, r = v2z = v/2y, produced with different upper bound b, ||[PS™(0)[|? < 400 on the
left and ||[P2™(0)||* < 4 on the right. The bound region drawn in white is still quite similar. Some of the spikes are trimmed

when the magnitude limit is set to 4.

5.2. Scator versus Fuclidean
magnitude

Definitions of the S set (9) and (19) make decisive
use of the scator magnitude. Recall that in com-
plex algebra, it does not matter whether the com-
parison is performed with the magnitude or either
the real or imaginary parts of the complex number.
All three quantities either diverge or are all bound.
In contrast, the condition is critical in hyperbolic
numbers’ algebra [Pavlov et al., 2009]. The real
and imaginary parts of the hyperbolic number
may increase indefinitely while their square differ-
ence remains bounded [Ferndndez-Guasti, 2014]. In
imaginary scator algebra, the term involving the
inverse squared of the scalar component %23—2-, plays
a crucial role in establishing the divergent mag-
nitude vicinity of periodic points, as we saw in
Sec. 4. Let us evaluate the relevance of the sca-
tor magnitude form in the numerical evaluation
regarding the so-called “bailout” condition. The
condition [|P2™(0)]|? < b with the scator magnitude
form is s2, + x2, 4+ y2, + %% < b, while the
condition established with the Euclidean norm is
s2 +x2, +y2, < b. The numerical evaluation of the
bound sets with these two conditions are compared
in Fig. 9. The square imaginary scator metric is
always larger than the Euclidean metric by a factor

of i”:g*‘i*» in 142 dimensions. In the first iteration, the
scator is s + &, + yé,. The Euclidean magnitude
is a sphere and its intersection with the y = 0.02
plane gives a circle. This outermost circle is shaded
in light blue on the right side of Fig. 9. On the other
hand, the scator magnitude involves the extra fac-
tor mi%ﬂ. This quantity becomes very large when s
is close to zero while z,y are finite. For this reason,
the outermost contour on the left side of Fig. 9 is
cleaved at the s = 0 plane. This cleavage vanishes
if the hyperplane y is zero (or the hyperplane z is
zero) because then the term involving the inverse
squared scalar component vanishes. Nonetheless, at
the next iteration, even the Kuclidean magnitude
s% + x5 + y3 contains terms with inverse squared
scalar terms, as may be seen from (11a)—(11b). This
contour corresponds to the next shade of blue in the
right side image of Fig. 9. It already shows a cleav-
age at the origin. However, no cleavage is observed
at —1 for the second iteration while the scator mag-
nitude on the left of the figure already has a cleavage
at —1 and an additional cleavage at zero. As higher
order iterations are considered, the contours with
the Euclidean metric seem to lag one behind the
scator metric. At any rate, the scator magnitude is
the appropriate metric for scator algebra since it is
the one that is derived from the second order invo-
lution of the algebra.

1630002-13
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Fig. 9. Scator versus Fuclidean, s;z plane at hyperplane

y = 0.02. Bound set colored in white. Evaluation with scator

magnitude condition (left) and with Euclidean magnitude (right).

6. Symmetries of the S Set in Three
Dimensions

The bound S set in parameter space in E't2, is
a set of points in a three-dimensional volume. In
Fig. 10, the image of a three-dimensional repre-
sentation of the S set is shown. This 3D version
was produced with P. Willenius’ extraordinary ren-
dering program [Willenius, 2013, v.2.0.1]. Thirteen
iterations were performed on each point. The col-
oring is due to the value of the components in the
last iteration, the scalar, x and ¥y director values
proportional to red, green and blue respectively
(s13 {red};z13 {green}, y13 {blue}). The image is
extremely intricate and somewhat sensitive to draw-
ing parameters. The M-set silhouette should be vis-
ible but it is not. The reason is two-fold: On the
one hand, there are regions of the boundary sur-
face with > 0 that overshadow the z = 0 plane.
On the other hand, the mesh in the €, hypercom-
plex axis is evaluated in 500 layers from —0.97 to
1.79. As we have shown in Sec. 3, it suffices that the
mesh misses the x = 0 plane even by tiny values
(i.e. 1077) for the set to be considerably deformed.
Some regions in the set, such as the M-set near
the s = 0 plane are extremely thin. When a few
iterations are evaluated, these regions are partially
“caught” within the bound criterion. However, as
the number of iterations increases, if the mesh

points do not intersect the thin bound regions they
become lost. To retain them, a much finer mesh is
required with the concomitant increase in the num-
ber of operations. Figure 10 already involves the

Fig. 10. Three-dimensional rendering of the S set in E 2
viewed from the first director hypercomplex axis €. A maxi-
mium of 13 iterations per point were performed. The abscissa
represents the scalar (or real) s axis, while the ordinate
depicts the second director hypercomplex axis &,.
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evaluation of 1.805 x 10% points (1900 x 1900 x 500).
A possibility, in order to visualize features that are
revealed with different resolutions and iterations, is
to superimpose various images with varying degree
of transparency.

The 3D set is squeezed at s = 0. The lack of
bound points in the vicinity of the s = 0 plane is due
to the divergent vicinity Ry described in (7). Other
divergent planes are not clearly seen because they
have curved surfaces as evinced from those depicted
in Fig. 2, that produce divergent magnitude points
in the second iteration. On the far left, there is a
hint of a self-similar smaller version of the larger
set.

The two hypercomplex axes are entirely equiv-
alent, thus there is invariance upon interchange of
the = and y variables. Therefore, there must be
symmetry upon reflection in the z,y plane as is
indeed observed. The z hypercomplex director com-
ponent is an odd function of z, thus upon iteration,
the function will be equal but with opposite sign
under the transformation * — —z. An equivalent
reasoning leads to the y — —y symmetry about
the ordinate hypercomplex axis that is observed
in Fig. 10. The transformation s — —s does not
have a well defined parity for the resultant scalar
term s% + 22 + 4% + L?{—Q— + s. Thus, the iterated
map is asymmetric with respect to the scalar axis
inversion.

6.1. Visualization and notation

An infinite number of planes can intersect the 3D S
set. The M-set is only one of these many intersec-
tions at either the z = 0 or y = 0 plane. Moreover,
the many Julia sets on the complex plane become
3D sets in E1*2) each of them with the possibility
of many intersections with 2D planes. The following
notation has been used by the author to label the
sets depicted on different planes:

c2i confined {2} quadratic iterations, (that can be
generalized to cpi for a pth power polynomial or
p — func for other function’s mappings)

e followed by O if the initial value of the variable is
set to zero (set depicted in parameter space) or
the initial value (s;;x;,7;) at which the constant
is fixed (set depicted in dynamical space).

e followed by the number system: R real, C com-
plex, H hyperbolic, '™ imaginary or Ef” real
scators (in 1+ n dimensions), etc.

e followed, if necessary, by the viewpoint or plane
(po; p1,p2) that is being depicted.

e in 3D renderings, fractal location and viewpoint
are required.

Thus, the Mandelbrot set in the complex plane is
labeled ¢2i0C, whereas the filled in Julia set K,
in the complex plane for the point z = a + ib
is labeled c2i(a, b)C. Since imaginary scators with
only one component are identical to complex num-
bers, the sets ¢2i0C and c2i0E*! are equiva-
lent. The S set in parameter space for imaginary
scators in 1 + 2 dimensions presented here,
according with the proposed notation, is labeled
c2i0E"2. The sets of Figs. 1, 4 and 7 are labeled
c2i0E 2 (s; z, 10~ 7), while the set of Fig. 9 is labeled
c2i0E'*2(s; 2,107 2). The sets in Figs. 5 and 8 are
labeled c2i0R*2(s;7/+/2,r/v/2). The 3D rendering
of Fig. 10 is labeled c2i0RE"2(0; 0, 0)(0;6,0).

7. Conclusions

The S set in E*2(s;z,y) has been defined in
parameter space in terms of scators whose magni-
tude does not tend to infinity under the quadratic
iteration. Imaginary scator algebra is a finite dimen-
sional algebra with the peculiarity that the scator
product is commutative but does not distribute over
addition. It is equipped with an order parameter
that in addition to the sum of the squared compo-
nents also involves terms with the inverse squared
of the scalar component. The quadratic mapping
has been justified on two grounds: (i) The scator
square function is defined by the scator product
operation of an element with itself, and (ii) If the
argument of the square function is multiplied by a
scalar, the outcome is equivalent to multiplication
by the square of the scalar (Lemma 2). The 3D S
set exhibits a rich and intricate boundary not found
in other higher dimensional generalizations of the
Mandelbrot set.

Evaluation of the S set at a constant but small
value of the second director hypercomplex variable
(y = 1077) reveals a distribution somewhat sim-
ilar to the M-set but with the main cardiod and
the bulbs squeezed at their centers. To explain
this behavior, the extended scator set E't? that
includes the points at infinity has been introduced.
Besides the usual points whose components tend
to infinity, this set also contains scator elements
with null scalar and finite director components

1630002-15

LIPS p S



M. Ferndndez-Guasti

(Rs set, Egs. (6) and (7)). This situation moti-
vated the definition of points that have a diver-
gent vicinity (Definition 2.1). Proposition 1, then
established that periodic points with period m have
a vicinity that maps onto the divergent magni-
tude set R, in the mth iteration. There is no
counterpart to this periodic point—divergent vicin-
ity behavior in two dimensions. It is a consequence
of the non-Euclidean magnitude of scator elements
that becomes relevant only in dimensions higher
than two. These results allow us to explain the
squeezing at the centers of the bulbs where the mth
periodic point is located. Examples have been pre-
sented for the first three iterations.

Square nilpotent elements have been charac-
terized in Lemma 1. Thereafter, we have shown
in Lemma 3, the preperiodicity of points that
are square nilpotent on the mth iteration. This
result has been illustrated with the square nilpotent
curves obtained on the second iteration at the plane
with equal initial director components. With the
preceding results, we have shown in Lemma 4, that
there is no upper bound to the scator magnitude
such that scators with larger magnitude diverge
under the square iteration. Thus, the definition of a
S. set in terms of an upper bound (19) is not equal
to the strict definition (9), although it is certainly
useful for numerical evaluations.

Some features and elementary symmetries of
the three-dimensional S set have been described.
The symmetry between the two director hypercom-
plex axes produces indistinguishable copies of the
M-set in the s,z and s,y hyperplanes. In contrast,
recall that other algebraic generalizations to higher
dimensions do not exhibit identical properties when
hypercomplex components are interchanged. Real
and complex algebra are embedded in imaginary
scator algebra; R and C are thus subsets of the
EF? imaginary scator set. Therefore, features of
the M-set such as the period doubling cascade lead-
ing to the Myrberg-Feigenbaum point or the one to
one correspondence with the bifurcation diagram of
the logistic map are also present in the imaginary
scator set. Different regions of the ¢2i0E!*2(s; z, v)
set reveal extraordinary structures that we have
only glimpsed at in an unsystematic fashion. Self-
similarity is present in the 3D structure. Powerful
rendering techniques are required to visualize the
intricacies of these higher dimensional sets.
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