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Abstract

The elliptic scator algebra quadratic iteration is evaluated in 1+2 dimensions
in dynamic space. There exists a non divergent K set in the scator three di-
mensional space with a highly complex boundary J = ∂K. Two and three
dimensional renderings of the sets in dynamic space are published for the first
time. The sets exhibit a rich fractal boundary in all three directions. Some
of the salient features of the sets can be described in terms of square nilpo-
tent iterations. The Julia and filled in Julia sets are identically reproduced at
two perpendicular planes where only one non-vanishing hypercomplex director
component is present. The fixed points of K in S1+2 with real constant c, can
be obtained from the roots of a scator quadratic polynomial equation. In S1+2

there can be, in addition to the usual complex roots, hypercomplex roots that
give rise to four additional fixed points. The inverse orbits of the hypercomplex
roots reveal a rich complex structure, that allow for the evaluation of an infinite
set of points in ∂K. The ∂K set of the origin is equal to the unit magnitude
scator surface, named a cusphere. The J set exhibits self similar structures in
3D at different scales, typical of fractal phenomena. The ix set, is the three
dimensional equivalent of the M-set in three dimensions. It is conjectured that
the ix-set with some restrictions, is the set of parameters where the J set is
connected.

Keywords: Hyper-complex numbers, Imaginary scators, Quadratic iteration,
Julia set, Discrete dynamical systems

1. Introduction

The iterated quadratic mapping in the imaginary scator set, produces a rich
and complex structure in parameter three dimensional space [1]. In contrast,
other algebraic structures with dimension higher than two, such as quaternions,
produce a disappointing surface of revolution of the M-set in three dimensions [2,
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3]. There have been other efforts to extend two dimensional fractal structures to
three dimensions such as ternary algebra [4], triplex algebra [5, 6] and variations
of them [7]. Visualizations of these sets, in particular quasi-Fuschian fractals [8]
and the mandelbulb, have received wide public exposure [9, 10].

In this communication, the three dimensional product and addition opera-
tions of imaginary scator algebra are invoked to evaluate the quadratic mapping
in dynamic space. Scator algebra is a finite dimensional algebra over the reals
with a multiplicative identity, thus fulfilling the hypercomplex algebra Kantor
and Solodovnikov criteria except for the distributivity of the product over ad-
dition [11]. Scator elements can thus be viewed as hypercomplex numbers in
1 + n dimensions if the distributivity condition is relaxed. For n = 2, many
of the singular properties of this algebra are already present. The scator prod-
uct is commutative and all elements except zero and infinity have an inverse.
Nonetheless, scator algebra is no longer a division algebra because it has zero
products of non zero factors. The scator product is associative in the multi-
plicative representation but not in the additive representation. The algebra is
endowed with a second order involution. This feature can be used to establish
an order parameter. These peculiarities do not prevent the scator number sys-
tem from generating consistent iterated quadratic mappings with a rich fractal
structure in parameter space [1]. Two theorems are now available that allow
relevant progress in the understanding of the scator dynamical system. The Vic-
toria theorem and its concomitant equation, is a generalization of the de Moivre
theorem to 1 + n dimensional scator space [12]. The roots of scator numbers
can be evaluated from a modified version of this theorem [13, 14]. Properties of
forward and backward orbits can then be evaluated relying on various forms of
these propositions. The second order polynomial equation with real coefficients
has been solved in 1 + 2 dimensional scator space [15]. This result permits the
evaluation of fixed points for Julia sets with real constant c, thereby obtaining
the attractor of the filled in Julia set as well as points on the Julia set. A con-
sequence of these two results is that an infinite number of points in the Julia
(boundary) set can be obtained from the fixed point hypercomplex roots.

Scator algebra also produces remarkable iterated quadratic mappings in dy-
namic space. This is the subject matter of the present communication: In
section 2, the essentials of imaginary scator algebra in 1+2 dimensions are pre-
sented. The scator quadratic mapping is described in section 3. Three dimen-
sional analogues of the Julia and filled in Julia sets are presented in this section.
2D and 3D renderings illustrate some of the main features of these sets. Square
nilpotent points are discussed in subsection 3.2. The fingerprint of the origin is
shown in subsection 3.3. Fixed points in scator dynamic space are described in
section 4; hypercomplex roots produce extra fixed points with very interesting
properties that coexist with the real or imaginary fixed points. Inverse orbits
are discussed in section 5, for appropriate parameters, the existence of four addi-
tional hypercomplex roots enhances the possibilities and dynamics of the inverse
orbits. It also permits the evaluation of new sets of points in the boundary set.
Self similar objects within the K set are set forth in section 6. An example
is expounded in section 7, where the K set exhibits a Cantor dust structure.
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Section 8 is dedicated to two conjectures, given the difficulties encountered to
establish formal proofs that necessarily require holomorphy. Conclusions are
drawn in the last section.

2. Imaginary scators

In the additive representation, scator elements in 1+2 dimensions are written
as the sum of three components,

o
φ = s+ x ěx + y ěy, (1)

where s, x, y ∈ R and ěx, ěy /∈ R. The first component is the scalar compo-
nent, while subsequent components are named director components [16]. Scator
elements are decorated with an oval placed overhead1. Addition of scators is de-

fined by the sum of coefficients in each component
o
α+

o

β = (a0 + axěx + ayěy)+
(b0 + bxěx + byěy) = (a0 + b0) + (ax + bx) , ěx + (ay + by) ěy. Scator numbers
satisfy commutative group properties under addition in R1+2.

Definition 2.1. The extended scator product
o
α

o

β of two scators,
o
α = a0 +

ax ěx + ay ěy and
o

β = b0 + bx ěx + by ěy is,

o
α

o

β = a0b0

(
1− axbx

a0b0

)(
1− ayby

a0b0

)
+ a0b0

(
1− ayby

a0b0

)(
ax
a0

+
bx
b0

)
ěx

+ a0b0

(
1− axbx

a0b0

)(
ay
a0

+
by
b0

)
ěy. (2)

If there are coefficients equal to zero in the scator factors, the director coefficients
limits should be taken prior to the scalar coefficients limit.

The scator product is usually defined in the S1+2 set, where infinity is
avoided. The extended scator product allows for divergent products, thereby
allowing for an attractor at infinity. The scator product is commonly separated
in three distinct cases depending on whether the scalar component vanishes or
not. It has been shown that all three possible cases can be obtained through a
continuous limiting process of Definition 2.1 in S1+2 [17].

Example 2.2. If ax = bx = 0,

lim
ax→0,bx→0,

( o
α

o

β
)
= (a0b0 − ayby) + (ayb0 + a0by) ěy.

The usual complex product in C is recovered. The imaginary unit is ěy. An
analogous result is obtained if ay = by = 0, but the imaginary unit is then ěx.

In the following four examples, all
o

β components are considered different
from zero, b0, bx, by ̸= 0.

1\overset{o} in LATEX lore
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Example 2.3. The limit a0 → 0 if axay ̸= 0, gives divergent coefficients in all
three components,

lim
a0→0

( o
α

o

β
)
=∞+∞ ěx +∞ ěy.

There are then scator factors with finite coefficients whose product admits infi-
nite coefficients.

Example 2.4. If a0 = 0 and ax = 0. The director coefficient limit should be
taken first, thus

lim
ax→0

( o
α

o

β
)
= (a0b0 − ayby) + (a0b0 − ayby)

(
bx
b0

)
ěx + (ayb0 + a0by) ěy;

Thereafter, the scalar component limit is evaluated

lim
a0→0

(
lim
ax→0

( o
α

o

β
))

= −ayby − ayby
bx
b0

ěx + ayb0ěy. (3)

Example 2.5. If one factor has vanishing director coefficients
o
α = a0 + 0 ěx +

0 ěy = a0,
o
α

o

β = a0
o

β = a0b0 + a0bxěx + a0byěy.

The a0 component produces a scaling of all the
o

β scator components. Hence it
is rightly named, the scalar component of the scator.

o
1 = 1 + 0 ěx + 0 ěy = 1 is

the multiplicative neutral.

Example 2.6. If axbx = ayby = a0b0, then
o
α

o

β = 0 + 0 ěx + 0 ěy, the scator
product is zero. Thus, there exist zero products of non zero factors.

2.1. Multiplicative representation of scators
The multiplicative representation of scators is analogous to the polar repre-

sentation of complex numbers in 1+1 dimensions,

o
φ = φ0e

φx ěxeφy ěy , (4)

where e is the complex exponential function. φ0 is the scator magnitude also
named the multiplicative scalar, φx is the angle of the scator projection between
s and the ěx axes, φy is the angle of the projection between s and the ěy axes.
In the multiplicative representation, the product of two scators is evaluated by
performing the product of the magnitudes and the addition of the multiplicative
director coefficients with the same director unit [12],

o
α

o

β =
(
α0e

αxěxeαy ěy

)(
β0e

βxěxeβy ěy

)
= α0β0e

(αx+βx)ěxe(αy+βy)ěy . (5)

The multiplicative scator components having the same director unit ěx or ěy,
satisfy the addition theorem for exponents. However, the addition theorem for
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exponents does not hold for scators with different director units, i.e. eφx ěxeφy ěy ̸=
eφx ěx+φy ěy .

The additive (1) and multiplicative (4) representations of scators are related
by

o
φ = φ0e

φx ěxeφy ěy = s+ x ěx + y ěy

= φ0 cosφx cosφy + φ0 cosφy sinφx ěx + φ0 cosφx sinφy ěy. (6)

From this expression, it follows that if s = φ0 cosφx cosφy = 0, then
o
φ = 0 or

o
φ

has only one non vanishing director component. Furthermore, if the two director
components do not vanish, φ0 cosφy sinφx ̸= 0 and φ0 cosφx sinφy ̸= 0, then
the scalar component is necessarily also different from zero.

Definition 2.7. The scator set S1+2 ⊂ R3, is the subspace where the scalar
component is not zero if the two director components are different from zero,

S1+2 =
{

o
φ = s+ x ěx + y ěy, s, x, y ∈ R : s ̸= 0 if x, y ̸= 0

}
. (7)

The S1+2 set avoids divergent products (like the one in Example 2.3). This
set was labeled with the letter E in some of the earlier manuscripts.

Remark 2.8. The scator additive and multiplicative representations are equiva-
lent in the S1+2 scator set, except for the kernel of the transformation.

2.2. Magnitude
The conjugate of the scator is given by the negative of the director compo-

nents, leaving the scalar component unchanged in either representation. In the
additive representation,

o
φ
∗
= s−xěx−yěy is the conjugate of

o
φ = s+xěx+yěy.

In the multiplicative representation,
o
φ
∗
= φ0 e

−φx ěxe−φy ěy is the conjugate of
o
φ = φ0e

φx ěxeφy ěy . The magnitude of a scator is equal to the positive square

root of the scator times its conjugate
∥∥ o
φ
∥∥ =

√
o
φ

o
φ
∗
. In the multiplicative rep-

resentation from (5),
∥∥ o
φ
∥∥ = φ0, the multiplicative scalar is thus the scator

magnitude. In the additive representation, the square magnitude is

∥∥ o
φ
∥∥2 =

o
φ

o
φ
∗
= s2

(
1 +

x2

s2

)(
1 +

y2

s2

)
. (8)

The multiplicative inverse, from (8) is
o
φ
−1

=
o
φ
∗∥∥ o

φ
∥∥−2 and in terms of additive

variables, the inverse is

o
φ
−1

= s−2

(
1 +

x2

s2

)−1(
1 +

y2

s2

)−1
o
φ
∗
. (9)

A scator is invertible except if all additive components are zero or if s = 0 when
xy ̸= 0.
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Definition 2.9. The extended scator set S̄1+2 = R3 ∪ {∞}, allows for all three
scator coefficients to be in the reals plus infinity

S̄1+2 =
{

o
φ = s+ x ěx + y ěy, s, x, y ∈ R ∪ {∞}

}
, (10)

The points at infinity are attained if any of the scator components becomes
infinite, i.e. s → ∞ and/or x → ∞ and/or y → ∞. The magnitude of these
points is infinite. Although the set of points with zero scalar component s = 0
and two nonvanishing director components xy ̸= 0 have finite coefficients, their
magnitude is also infinite. Elements in S̄1+2 \ S1+2 have divergent magnitude.
This state of affairs has led to the concept of divergent vicinity whenever the
zero scator is involved [1]. The element 0 + 0 ěx + 0 ěy has a divergent vicinity
since the magnitude of 0 + δx ěx + δy ěy is infinite if δx, δy ̸= 0. The scator
magnitude does not diverge in S1+2.

Remark 2.10. There exists a scator multiplicative representation for elements
in the S1+2 scator set but not in S̄1+2 \ S1+2.

Let us mention two propositions that will be useful in the coming sections:

Lemma 2.11 (Fernandez-Guasti, 2016). The only non trivial square nilpotent

elements
o
φ
2
= 0+ 0 ěx + 0 ěy in 1+2 dimensional imaginary scator algebra are

elements whose three components have equal absolute value,
o
φ = ±g±g ěx±g ěy.

Corollary 2.12 (Fernandez-Guasti, 2016). The square of an invertible element
is invertible if it is not square nilpotent.

3. Iterated quadratic mapping

Consider a function
o

f : S̄1+2 → S̄1+2 to be a scator function of scator
variable.

Definition 3.1. The non divergent set K
(o
f
)

in dynamic space for imaginary
scators in 1+2 dimensions is given by

K
(o
f
)
=

{
o
φ ∈ S̄1+2 : ∀m ∈ N,

∥∥o

f
m( o

φ
)∥∥↛∞

}
, (11)

where
o

f
m

denotes the m-fold composition
o

f
m

=
o

f
(o
f
(o
f · · ·

))
of the function

o

f ∈ S1+2.

K
(o
f
)

is a three dimensional generalization of the filled in Julia set. In this
generalization, the Julia set is again defined as the boundary of the filled in

Julia set J
(o
f
)
= ∂K

(o
f
)
. This boundary is now embedded in an S̄1+2 three

dimensional space. The filled in K
(o
f
)

set has been defined in terms of a non
divergent condition rather than a bounded one. This will be relevant, as we
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shall see further down, because nilpotent points can have very large magnitude
but are nonetheless in the K set.

The square of a scator
o
φ = s + xěx + yěy is obtained from the product of

two equal scators,
o
φ
2
= (s+ xěx + yěy)

2. From Eq. (2)

o
φ
2
= s2

(
1− x2

s2

)(
1− y2

s2

)
+ 2sx

(
1− y2

s2

)
ěx + 2sy

(
1− x2

s2

)
ěy. (12)

The square function mapping q : S1+n → S1+n,
o
φ 7→ o

φ
2

satisfies q
(
λ

o
φ
)
=

λ2q
( o
φ
)
, λ ∈ R. In the multiplicative representation, the square of a scator is

o
φ
2
= φ2

0 e
2φxěxe2φy ěy . (13)

Consider the family of maps
o

f c :
o
φ 7→ o

φ
2
+

o
c from S̄1+2 to S̄1+2, where the

variable
o
φ and the constant

o
c are scator elements. The iteration procedure in

dynamic space is obtained by fixing an initial constant
o
c and evaluating, for

each point
o
φ in the scator space, the quadratic recurrence relationship

o
φm+1 =

o
φ
2

m +
o
c. (14)

Non divergent points obtained for an arbitrary number of iterations comprise
the K set in S̄1+2. In terms of the additive coefficients, for each point

o
φ1 =

s1 + x1 ěx + y1 ěy and
o
c = cs + cx ěx + cy ěy, the quadratic iteration recurrence

relationship for the scalar component is

sm+1 = s2m

(
1− x2

m

s2m

)(
1− y2m

s2m

)
+ cs (15a)

and for the director components,

xm+1 = 2smxm

(
1− y2m

s2m

)
+ cx, (15b)

ym+1 = 2smym

(
1− x2

m

s2m

)
+ cy. (15c)

The iteration (15a)-(15c) has been implemented in the Mandelbulber (version
2.20-dev) three dimensional fractal visualization program. Very intricate sur-
faces are obtained that are difficult to handle by ray tracing programs. The
processing power required to generate 3D fractals is greatly increased compared
with 2D renderings. It is necessary to extend the two dimensional image grid
to three dimensional space. An image with 103 pixels resolution in each axis,
requires 109 voxels (1000 million points!). Thus, the iteration of a much larger
set of points is required to begin with. Thereafter, computer ray tracing is nec-
essary to establish the observer point of view, with the concomitant occlusion of
interior points or points that lie behind a particular surface from the observer
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Figure 1: Non divergent set in 3D dynamic scator space, K
(o
φ
2
+

o
φc

)
∈ S1+2 of the

o
c =

−0.5+0 ěx +0.5 ěy hypercomplex point, seen from
o
v = 3− 8 ěx +1 ěy . Image generated with

the ’Mandelbulber’ rendering program.

point of view. The capability of using parallel GPU processing using OpenCL
has greatly enhanced the rendering velocity.

Two dimensional renderings of the 3D K
(o
f c

)
set can also be made at a

particular 2D plane with standard plots. For example, the set in the (s, ěy)
plane at a constant x0ěx value is obtained by evaluating the (15a)-(15c) triad
for s + x0ěx + yěy, for all s, y values. Inclined planes can also be rendered if
a condition of the form x = my, where m is constant, is imposed. Notice that
in these cases, the plane under consideration has no breath, i.e. it is fixed to a
single value. In contrast, 3D renderings require voxels, that is 3D tiny boxes;
in this case, a plane can be approximated only to within the thickness of the
minimum voxel size.

3.1. Non divergent set in dynamic space for
o
c = −0.5 + 0 ěx + 0.5 ěy

Consider, as an initial example, the quadratic iteration non divergent set in
dynamic S1+2 scator space K

( o
φ
2
+

o
c
)

for the hypercomplex point
o
c = −0.5 +

0 ěx + 0.5 ěy. The rendered set, observed from
o
v = 3− 8 ěx + 1 ěy, is shown in

figure 1. This set is equivalent to the filled in Julia set in the complex plane
K
(
z2 + zc

)
∈ C, zc = −0.5+0.5i but extended to three dimensional space. The

fractal nature of the surface makes it very difficult to produce an accurate ray
tracing reflection due to the boundary roughness.

A close up of the central region is shown in figure 2a. The surface exhibits
an intricate pattern of streaks in different directions. There is, so far, hardly
any resemblance of this figure with a filled in Julia set. It is possible to limit
the rendering to a region in the mandelbulber program. In figure 2b, the set
is limited to 0 ≤ x ≤ 10 region in the ěx direction and left in the default ±10
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(a) Rendering for values within ±10 in all
three variables.

(b) Rendering restricted to the 0 ≤ x ≤ 10
region in the ěx axis.

Figure 2: K
(o
φ
2
+

o
c
)

closer detail of the
o
c = −0.5 + 0 ěx + 0.5 ěy hypercomplex point, seen

from
o
v = 0.75− 2 ěx + 1 ěy .

limits in the scalar and ěy axes. The set inside colouring, established by the
programmers, is determined by the value at the end of the orbit trap iterations.
The surface cut at x = 0 begins to look a bit more familiar.

If the observation point is located on the ěx axis, figure 3a is obtained and
if the rendering is further restricted to a region very close to the x = 0 plane,
figure 3b is obtained. In a 3D rendering, the voxels have finite size in all three
directions, in fact, they are usually tiny cubes. This means that the x = 0
plane cannot be chosen with zero breath. It has to encompass a finite albeit
small depth. Some kinks, particularly evident close to the s = 0 line, are a
consequence of this finite depth. For comparison, a filled in Julia set K (zc)
for zc = −0.5 + 0.5i in the complex plane is shown in figure 3c. The two
sets are remarkably similar, the irrelevant filled in colouring making for most
of the difference. The minor differences, mainly observed close to s = 0, but
present in the whole frontier when looked in detail, can be attributed to the
finite depth of the 3D rendering. To confirm this assertion, the voxel size is
estimated to be 6.1 × 10−3 per side. The 3D program is then evaluating the
x = 0 plane with ±3.05 × 10−3 resolution. In figure 3d, a 2D rendering at the
o
φ = x + 0.003 ěx + y ěy hypercomplex plane is depicted. This set exhibits the
kinks absent in the Julia set, but present in the 3D rendering.

3.2. Nilpotent elements
Besides the central bundle, there are eight straight long filaments extending

from the center up to large coordinate values. There are also smaller spikes
that describe hyperbolic like curves. These broad features can be understood
in terms of nilpotency. The constant

o
c is obtained on the first iteration if the

initial point is square nilpotent,

o
φ2 =

o
φ
2

nil1 +
o
c =

o
c.

Thereafter, the iterations in dynamic space follow the orbit of the point
o
c in

parameter space, i.e. { oφnil,
o
c,

o
c
2
+

o
c,
(o
c
2
+ c
)2

+
o
c, ...}. The quadratic iteration
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(a) K
(o
φ
2
+

o
c
)

seen from
o
v = 0− 2 ěx + 0 ěy

restricted to 0 ≤ x ≤ 10.
(b) K

(o
φ
2
+

o
c
)

seen from
o
v = 0− 2 ěx + 0 ěy

but restricted to the minimum voxel size in
x, −0.003 ≤ x ≤ 0.003.

(c) Familiar filled in Julia set of the zc =
−0.5 + 0.5i point in the complex plane ob-
tained from a standard 2D plot.

(d) K
(o
φ
2
+

o
c
)

evaluated at the plane
o
φ =

s+ 0.003ěx + yěy , with a standard 2D plot.

Figure 3: K
(o
φ
2
+

o
c
)

detail of the
o
c = −0.5 + 0 ěx + 0.5 ěy hypercomplex point. Comparison

of a thin 3D slice seen from the ěx direction, the Julia set in the complex plane and a 2D
rendering with an offset of 0.003 in the ěx hypercomplex plane.
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bound set in parameter S1+2 scator space is coined here as the Ix-set2. This
set has been described in an earlier communication [1]. The Mandelbrot set is
a subset of the Ix-set, M ⊂ Ix if any of the two director components is equal to
zero. The sequence { oφnil,

o
c,

o
c
2
+

o
c,
(o
c
2
+c
)2
+

o
c, ...} does not diverge if the constant

o
c belongs to the Ix-set. The orbit of all nilpotent initial points after the first
iteration is the same and is the sequence of

o
c in parameter space. If the constant

o
c is in the Ix-set, it is a bound point and therefore nilpotent points will be in
the K

( o
φ
2
+

o
c
)

set. From Lemma 2.11, nilpotent elements have equal absolute
value of the scalar and director components. The four

o
φ =

o
γ = ±g ± gěx ± gěy

straight lines are tilted ±45° with respect to the s, ěx and s, ěy projections. The
azimuthal angle with respect to any of the axes is arctan

(
±
√
2
)
≈ ±54.7°. The

eight main spikes present in the K
( o
φ
2
+

o
c
)

sets for
o
c ∈ Ix-set, are due to this

nilpotent feature. These spikes extend to arbitrarily large values of g.

Lemma 3.2. A point
o
φ whose mth iteration is square nilpotent belongs to the

K set if the constant
o
c does not diverge in parameter space.

Proof. For a point that is square nilpotent after m iterations, the m+1 iteration
is equal to

o
c,

o
φ
2

m +
o
c =

o
c. Thereafter, the sequence is equal to that of

o
c in

parameter space. The forward orbit is { oφ1,
o
φ2, . . . ,

o
φm,

o
φ
2

m +
o
c =

o
c,

o
c
2
+

o
c, ...}. Therefore

o
φ does not diverge in dynamic space if

o
c does not diverge in

parameter space.

Lemma 3.3. There is no upper bound for the set of points that are nilpotent
upon the mth iteration.

Proof. If
o
φm is square nilpotent, from Lemma 2.11, its additive components

must have equal absolute value,
o
φm =

o
γ = ±g± gěx± gěy. The magnitude of

o
γ

from (8), is
∥∥o
γ
∥∥ = 2

∣∣g∣∣. The multiplicative angle variables are obtained from the

quotient of the directors over the scalar component, γx = γy = arctan
(

g
g

)
= π

4 .

The multiplicative representation of the scator
o
γ is then

o
γ = 2ge

π
4 ěxe

π
4 ěy .

Consider the constant
o
c to be much smaller than any of the

o
φj iterates, so that

o
φ
2

j +
o
c ≈ o

φ
2

j . Upon each iteration the exponent is doubled,
o
φm =

o
γ =

o
φ
2m

1 . The
initial point

o
φ1 is thus obtained from inversion of this equation

o
φ1 =

o
φ

1
2m

m =
o
γ

1
2m

.

2Ix is pronounced ish, like in lavish.
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From the Victoria Theorem in the multiplicative representation [14], the qth

root of
o
φ in S1+2 is

o
φ

1
q
=

(
φ0e

φxěxeφy ěy

) 1
q

= φ
1
q

0 exp

[
1

q
(φx + 2πrx + σπ) ěx

]
exp

[
1

q
(φy + 2πry + σπ) ěy

]
,

where rx, ry ∈ Z, from 0 to q− 1 and σ is 0 or 1. In the particular case of
o
γ

1
2m ,

o
γ

1
2m

= 2m
√
2
∣∣g∣∣ exp [ 1

2m

(π
4
+ 2πrx + σπ

)
ěx

]
exp

[
1

2m

(π
4
+ 2πry + σπ

)
ěy

]
.

(16)

The magnitude of this scator is
∥∥ o
φ1

∥∥ =
∥∥o
γ

1
2m
∥∥ = 2m

√
2
∣∣g∣∣. Since g can be

arbitrarily large, the magnitude of the initial point
o
φ1 does not have an upper

bound.

Corollary 3.4. The x
s and y

s asymptotes of nilpotent points upon the mth it-
eration are tan

(
π

2m+2 mod π
2m

)
.

Proof. From the multiplicative to additive representation (6) of the roots given
by (16),

o
φ1 = s+ x ěx + y ěy =

o
γ

1
2m

= 2m
√
2
∣∣g∣∣ cos( π

4 + 2πrx + σπ

2m

)
cos

( π
4 + 2πry + σπ

2m

)
+ 2m

√
2
∣∣g∣∣ cos( π

4 + 2πry + σπ

2m

)
sin

( π
4 + 2πrx + σπ

2m

)
ěx

+ 2m
√
2
∣∣g∣∣ cos( π

4 + 2πrx + σπ

2m

)
sin

( π
4 + 2πry + σπ

2m

)
ěy. (17)

The quotient of the directors over the scalar component are

x

s
= tan

( π

2m+2
± π

2m
rx

)
,

y

s
= tan

( π

2m+2
± π

2m
ry

)
.

The
o
φ
2

j +
o
c ≈ o

φ
2

j approximation is extremely crude. A richer structure
is obtained if the constant is not neglected, although the analytic expressions
become rather awkward upon iteration. Consider points that are nilpotent on

the second iteration,
(

o
φ
2

1 +
o
c
)2

= 0, then
(

o
φ
2

1 +
o
c
)
nil

is square nilpotent and
thus the absolute value of its coefficients must be equal,

o
φ2 =

(
o
φ
2

1 +
o
c
)
nil

=
o
γ = ±g ± gěx ± gěy.
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The forward orbit for these points is { oφ1,
(

o
φ
2

1 +
o
c
)
nil

,
o
c,

o
c
2
+

o
c,
(o
c
2
+c
)2

+
o
c, ...}.

For
o
c = c0 + cxěx + cyěy, the initial point

o
φ1 has to satisfy

o
φ1 =

√
o
γ − o

c =
√
(±g − c0) + (±g − cx) ěx + (±g − cy) ěy.

Returning momentarily to the first order approximation, in the limit when
g ≫ c0, cx, cy,

o
φ
2

1 +
o
c ≈ o

φ
2

1 = g + gěx + gěy, the roots of a square nilpotent
element

√
±g ± gěx ± gěy are

o

ζ±,0 = ±
√
|g|
2

[(√
2 + 1

)
± ěx ± ěy

]
,

o

ζ±,1 = ±
√
|g|
2

[(√
2− 1

)
∓ ěx ∓ ěy

]
.

There are thus spikes at

arctan

(
± 1√

2 + 1

)
= ±π

8
= ±22.5◦, and arctan

(
± 1√

2− 1

)
= ±3π

8
= ±67.5◦

with respect to the s, ěx and s, ěy projections. These results are equivalent to
(17) with m = 1, but written in terms of additive variables.

If the constant
o
c is a scalar

o
c = c0, (cx = cy = 0), the points that are square

nilpotent on the second iteration are, as shown in the appendix,

o

ζ±,0 =
1

2

√
1

|g − c0|

[
±
(√

2g2 − 2gc0 + c20 + (g − c0)

)
± g ěx ± g ěy

]
, (18a)

and from the π-pair symmetry,

o

ζ±,1 =
1

2

√
1

|g − c0|

[
±
(√

2g2 − 2gc0 + c20 − (g − c0)

)
± gěx ± gěy

]
. (18b)

A plot of these points for −30 ≤ g ≤ 30 and ěx, ěy coefficients with equal sign is
shown in figure 4. A similar plot tilted at 90° is obtained for ěx, ěy coefficients
with opposite sign. The hyperbolic like curves in figure 4 are qualitatively
identified with some of the fibre bundles shapes in the various K sets shown in
this work. The plots specifically correspond to nilpotent points on the second
iteration of the K

( o
φ
2
− 1

2

)
set described in subsection 4.1.

3.3. The fingerprint of the origin.
Consider the constant point to be the origin,

o
c = 0 + 0 ěx + 0 ěy. The

quadratic iteration is then
o
φm+1 =

o
φ
2

m.

From the multiplicative to additive representations (6) and the square of a scator
in the multiplicative representation (13), the square of a scator is

o
φ
2
= φ2

0 e
2φx ěxe2φy ěy

= φ2
0 [cos (2φx) cos (2φy) + cos (2φy) sin (2φx) ěx + cos (2φx) sin (2φy) ěy] .
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Figure 4: Roots
o
ζ±,0 and

o
ζ±,1 for director components with equal signs, c0 = − 1

2
in Eqs. (18a)

and (18b). These lines correspond to nilpotent points on the second iteration for −30 ≤ g ≤ 30.
Nilpotent points on the first iteration are shown with dotted lines.

Its magnitude is
∥∥ o
φ
2∥∥ = φ2

0. The doubling of angles produces a scator rotation
(not an Euclidean rotation) in the s, ěx and s, ěy planes that does not alter

the scator magnitude. A repeated iteration
o
φm+1 =

o
φ
2

m will then make the
magnitude increase indefinitely for

∥∥ o
φ
∥∥ > 1 and will decrease monotonically

for
∥∥ o
φ
∥∥ < 1. The magnitude will only be invariant for unit magnitude scators∥∥ o

φ
∥∥ = 1. The set for the origin in dynamic space should then be the isometric

surface. This is indeed the case, figure 5a shows the 3D rendering of the J
( o
φ
2)

set for
o
c = 0+0 ěx+0 ěy. For comparison, the cusphere surface, drawn for unit

magnitude from Eq. (6), is shown in figure 5b. The J
( o
φ
2)

set is compared with

the isometric surface rather than K
( o
φ
2)

because it is the boundary J = ∂K
that is actually equal to the cusphere surface.

The J set for the origin in S1+2, is a higher dimensional analogue of its
counterpart in the complex plane. In C, the Julia set of the origin is a unit
circle, i.e. the constant Euclidean metric in 2D. Recall that the constant scator
metric (8) degenerates onto a circle for x = 0 or y = 0. In 1+ 2D, the constant
scator magnitude departs from the sphere (the 3D Euclidean constant metric).
The cusphere is the constant scator magnitude surface for elliptic scators in
S1+2 [18].

4. Fixed points

Lemma 4.1. The fixed points in S1+2 scator space for the quadratic iteration
o
φm+1 =

o
φ
2

m +
o
c, provided that the constant

o
c = c+ 0 ěx + 0 ěy is a scalar are:
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(a) J
(o
φ
2)

seen from
o
v = 1.4−2.5 ěx+0.7 ěy . (b) Cusphere drawn from parametric plot

of Eq. (6) with φ0 = 1

Figure 5: Bound set for the origin
o
c = 0+0 ěx+0 ěy and the cusphere rendered from the unit

scator magnitude condition,
∥∥o
φ
∥∥ = 1.

If |4c| > 1, (four hypercomplex roots)

o
φS1+2\S1+1 =

(
c+

1

4

)
± 1

4

√
16c2 − 1ěx ±

1

4

√
16c2 − 1ěy; (19a)

If 4c ≤ 1, (real roots),
o
φS1+0 =

1

2
± 1

2

√
1− 4c; (19b)

If 4c > 1, (two copies of the complex like roots),

o
φS1+1

x
=

1

2
± 1

2

√
4c− 1ěx,

o
φS1+1

y
=

1

2
± 1

2

√
4c− 1ěy. (19c)

Proof. The point
o
φ is fixed if

o
φm+1 =

o
φm in the quadratic iteration. The

polynomial to be solved is then

o
φ
2
− o

φ+ c = 0, (20)

where
o
φ ∈ S1+2. The scator solutions to this polynomial are given by Theorem

1 in [15]:

Theorem 4.2 (Fernandez-Guasti, 2021). The second order polynomial a
o
φ
2
+

b
o
φ + c = 0, where

o
φ ∈ S1+2 is an elliptic scator and a, b, c ̸= 0 are real coeffi-

cients, has the following roots:
If |4ac| > b2,

o
φS1+2\S1+1 = −4ac+ b2

4ab
±

√
(4ac)

2 − (b2)
2

16a2b2
ěx ±

√
(4ac)

2 − (b2)
2

16a2b2
ěy; (21a)
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If 4ac ≤ b2,
o
φS1+0 = − b

2a
±
√
b2 − 4ac

2a
; (21b)

If 4ac > b2,

o
φS1+1

1
= − b

2a
±
√
−b2 + 4ac

2a
ěx,

o
φS1+1

2
= − b

2a
±
√
−b2 + 4ac

2a
ěy. (21c)

For the fixed points quadratic polynomial (20), a = 1, b = −1. From (21a)-
(21c), the solutions (19a)-(19c) are obtained.

In contrast with the quadratic polynomial in the complex field, where the
roots are either both real or both imaginary, the hypercomplex solutions can
coexist with the real or complex like solutions in S1+2. We refer to hypercomplex
roots to those solutions where the scalar and both director components are
different from zero.

• If − 1
4 ≤ c ≤ 1

4 , only the usual two, possibly degenerate, real solutions
exist. Outside this region, there are additionally four hypercomplex roots.

• For c < − 1
4 , there are six fixed points. In addition to the two real points,

there are four fixed points due to the hypercomplex roots. These point lie
in the ěx, ěy plane in the negative s semispace at s = c+ 1

4 .

• For c > 1
4 , there are eight fixed points. Four fixed points, two in the s, ěx

plane and two in the s, ěy plane. These points correspond to the usual
solutions in the complex plane, but there are now two hypercomplex planes
sharing the scalar axis. There is no precedence of the two hyperimaginary
axes, the two hyperimaginary units ěx or ěy become identical to the i
imaginary unit if only one (hyperimaginary) director component is present.
In addition, there are four hypercomplex roots in the positive s semispace
at the s = c + 1

4 plane. There exist hypercomplex roots (|4ac| > b2)
whenever there exist complex like roots (4ac > b2).

The hypercomplex roots have director components with equal absolute value.
Therefore, the four fixed points lie symmetrically placed in 45° planes with
respect to the ěx, ěy axes. Just as in the complex plane, the constant c may
be any point in c ∈ C; in S1+2, the constant

o
c can be any point in the S1+2

scator set. However, analytic solutions to the quadratic equation in S1+2 are
only available at present for scalar (real)

o
c .

4.1. c = − 1
2 , connected set

If
o
c = − 1

2+0 ěx+0 ěy, from (19b) the well known two real roots are obtained.
These two fixed points

o
φS1+0 = 1

2 ±
√
3
2 , are shown in red in the complex plane

2D rendering in figure 6a. As usual, one of them is at the boundary
o
φS1+0,+ =

1
2 +

√
3
2 ∈ J

( o
φ
2
− 1

2

)
, while the other is an interior point

o
φS1+0,− = 1

2 −
√
3
2 ∈
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(a) Julia set for c = − 1
2
. Fixed points

in the real axis shown in red.
(b) 3D rendering of the K

(o
φ
2
− 1

2

)
seen from

o
νobs = 0−2 ěx+0 ěy , restricted to 0 ≤ x ≤ 10

(c) 2D rendering of the

K
(o
φ
2
− 1

2

)
, s = −0.25. The

fixed hypercomplex points
are shown in red.

(d) 3D rendering of the K
(o
φ
2
− 1

2

)
seen from

o
φobs = 2 + 0 ěx + 0 ěy , re-

stricted to −10 ≤ x ≤ −0.25

(e) K
(o
φ
2

− 1
2

)
, re-

stricted to −10 ≤ s ≤
−0.25 and 0 ≤ x ≤ 10.

Figure 6: Non divergent set in S1+2 dynamic space for c = − 1
2
.
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K
( o
φ
2
− 1

2

)
\ J . This set is also shown in a 3D rendering in figure 6b. The

K
( o
φ
2
− 1

2

)
volume has been restricted to the positive semi-space, thus exhibiting

the x = 0 plane in the forefront since the viewpoint is located on the ěx axis at
−2, i.e.

o
vobs = 0− 2 ěx + 0 ěy.

In addition to these two real roots, the hypercomplex roots from (19a) are

o
φS1+2\S1+1 = −1

4
±
√
3

4
ěx ±

√
3

4
ěy. (22)

These invariant points, labeled
o
φinv1 to

o
φinv4 for the ++,−−,−+,+− sign

combintations respectively, are shown in red in figure 6c; where a two di-
mensional rendering of the K

( o
φ
2
− 1

2

)
volume intersection with the ěx, ěy

plane at s = −0.25 is depicted. These four hypercomplex roots seem to be-
long to the J set since they visually lie on the boundary of the filled in set,
J
(

o
φ
2
− 1

2

)
= ∂K

(
o
φ
2
− 1

2

)
. This set is the higher dimensional analogue of the

Julia set in the complex plane. In figure 6d, a 3D rendering is shown viewed
from the s axis, the K

( o
φ
2
− 1

2

)
set is limited to the interval −0.25 ≥ s ≥ −10.

A perspective where two of the hypercomplex fixed points and one of the real
fixed points are shown in red, is depicted in figure 6e. There are then 6 forward
invariant points in the K

( o
φ
2
− 1

2

)
set in S1+2 scator space, in contrast with the

2 fixed points in S1+1 scator space (equivalent to the complex plane).

5. Inverse orbits

Recall that the Julia set J (f) = ∂K (f) is the closure of the set of repelling
periodic points. If the function is inverted, the set of limit points of the iterated
backward orbits gives the Julia set.

Lemma 5.1. The inverse orbits of the quadratic function
o

f =
o
φ
2
+

o
c where

o

f = s+ x ěx + y ěy and
o
c = cs + cx ěx + cy ěy, are given by

o

ζ±,0 = ±1

2

√
1

|s|
(√

sx+ sy+ + Sgnx
√
sx− sy+ ěx + Sgny

√
sx+ sy− ěy

)
, (23a)

and,

o

ζ±,1 = ±1

2

√
1

|s|
(
SgnxSgny

√
sx− sy− − Sgny

√
sx+ sy−ěx − Sgnx

√
sx− sy+ěy

)
,

(23b)
where

sx+ =

√
(s− cs)

2
+ (x− cx)

2
+(s− cs) , sx− =

√
(s− cs)

2
+ (x− cx)

2−(s− cs) ,

sy+ =

√
(s− cs)

2
+ (y − cy)

2
+(s− cs) , sy− =

√
(s− cs)

2
+ (y − cy)

2−(s− cs) .
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Proof. The inversion of the quadratic function is
o
φ =

√
o

f − o
c; if the scator

components are subtracted,
o

f − o
c = (s− cs) + (x− cx) ěx + (y − cy) ěy. Eqs.

(A.1a) and (A.1b) are then invoked to obtain the square roots (23a) and (23b).

This Lemma provides an algorithm for visualizing the Julia set in 1+2D.
There are four possible roots, on each backward iteration any one of them can
be chosen or evaluated in parallel in suitable computer systems. Starting with
arbitrary points in S1+2, points in the Julia set are not actually attained but
values converge sufficiently close to the J set in a few iterations for visualization
purposes. However, this procedure will not render all the nilpotent points due
to Lemma 2.11.

From Lemma 4.1, the fixed points given by the hypercomplex roots of the
quadratic equation (20) have equal director coefficients magnitudes, x2 = y2 in
(19a). Furthermore, consider the constant

o
c to be restricted to a non vanishing

scalar value
o
c = cs, that is, cx = cy = 0. Imposing these conditions, the square

roots (23a) are

o

ζ±,0 = ±1

2

√
1

|s− cs|

(√
(s− cs)

2
+ x2 + (s− cs) + x ěx + y ěy

)
, (24a)

and (23b)

o

ζ±,1 = ±1

2

√
1

|s− cs|

(
Sgnx Sgny

[√
(s− cs)

2
+ x2 − (s− cs)

]
− y ěx − x ěy

)
,

(24b)
where x and y have been retained in the director coefficients to account for their
sign.

5.1. Preimages of the J
( o
φ
2
− 1

2

)
fixed points

The Julia set of a function f is invariant under the mapping of f or its inverse.
This assertion implies that any point in the Julia set is mapped onto another
point within the set for either a forward or a backward orbit. This mapping is
usually chaotic. The hypercomplex fixed points for

o
c = − 1

2+0 ěx+0 ěy are given

by (22). The
√

o
φinv1 −

(
− 1

2

)
=

√
1
4 +

√
3
4 ěx +

√
3
4 ěy roots from (24a)-(24b) are

then

o

ζ±,0 = ±

(
3

4
+

√
3

4
ěx +

√
3

4
ěy

)
,

o

ζ±,1 = ±

(
1

4
−
√
3

4
ěx −

√
3

4
ěy

)
.

From these four roots, the outcome of
o

ζ−,1 is again the fixed point
o
φinv1,√

o
φinv1 −

o
c =

(
1

4
+

√
3

4
ěx +

√
3

4
ěy

) 1
2

=
o

ζ−,1 = −1

4
+

√
3

4
ěx+

√
3

4
ěy =

o
φinv1.
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o

ζ+,0 s x y
o
φinv1 -0.25 0.433013 0.433013(

o
φinv −

o
c
) 1

2

0.75 0.433013 0.433013
... 1.15062 0.193649 0.193649

1.28917 0.0753636 0.0753636
1.33819 0.0281712 0.0281712
1.35588 0.0103891 0.0103891
1.36232 0.00381307 0.00381307

...
...

...
1
2 +

√
3
2 ≈ 1.36603 . . . 0 0

Table 1: Inverse orbit of fixed point
o
φinv1 evaluated with the

o
ζ+,0 =

1
2

√
1

|s+ 1
2 |

(√(
s+ 1

2

)2
+ x2 + s+ 1

2
+ x ěx + y ěy

)
root. All points belong to the J

set (orange points in Figure 7).

The fixed point
o
φinv1 is forward invariant (by construction) and backward in-

variant under the action of
o

ζ−,1. However, let us consider the action of the other

three roots. The inverse orbit iteration evaluated with the
o

ζ+,0 root, seems to
converge to a constant scalar component while the director components decrease
monotonically, as shown in Table 1. A few iterates (orange points) are depicted

in Figure 7, where the intersection of the K
( o
φ
2
− 1

2

)
set with a plane having

equal director components is pictured. The sequence seems to converge towards
1.36 . . . + 0 ěx + 0 ěy, but interestingly, the value of the real fixed point in the
Julia set is

o
φS1+0,+ = 1

2 +
√
3
2 ≈ 1.36603 · · · . The point labeled 1.366 in figure

7 is the same point depicted in the boundary of Figures 6a and 6b. In these
two figures, the plane intersecting K

( o
φ
2
− 1

2

)
is x = 0 (or y = 0), whereas the

intersecting plane is x = y in Figure 7. All the points in the sequence are in the
boundary of the K

( o
φ
2
− 1

2

)
set.

Backward iterations of
o
φinv1 with the

o

ζ+,1 root, give values with ever smaller
scator coefficients in all three components as can be seen in Table 2. While the
scalar component decreases monotonically, the director components alternate
signs although their absolute value also decreases monotonically. These iterates
are shown with cyan dots in Figure 7, the value of one iterate to the next joined
by yellow lines. It is interesting to notice that the magnitude of the elements of
the sequence seems to converge to 1√

2
, after 25 iterations it is

∥∥ o
φ
∥∥ = 0.707107.

While the origin is seen as an interior point of the K
( o
φ
2
− 1

2

)
set in the y = 0

plane, the indentations of this set in the x = y plane portray the origin as a
boundary point. All the points in the sequence again lie in J = ∂K

( o
φ
2
− 1

2

)
.
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Figure 7: The K
(o
φ
2
− 1

2

)
set observed at the intersection with the x = y plane (equal director

components). The axes plot are s (abscissas) versus 1√
2
(ěx + ěy) (ordinates, shown with a

dotted line in Fig. 6c). Inverse orbits of the fixed point
o
φinv1 = − 1

4
+

√
3

4
ěx +

√
3
4
ěy are

shown. All the points lie in the boundary of the filled in set, namely in the ∂K
(o
φ
2
− 1

2

)
= J

set.

o

ζ+,1 s x y
∥∥ o
φ
∥∥

o
φinv1 -0.25 0.433013 0.433013 1(

o
φinv1 −

o
c
) 1

2

0.25 -0.433013 -0.433013 1

... 0.0669873 0.25 0.25 1
0.0349738 -0.166006 -0.166006 0.823
0.0172025 0.113482 0.113482 0.766
0.00855398 -0.0788981 -0.0788981 0.736
0.00426558 0.0553182 0.0553182 0.722
0.00213004 -0.0389501 -0.0389501 0.714
0.00106434 0.0274834 0.0274834 0.711

...
...

...

Table 2: Inverse orbit of fixed point
o
φinv1 evaluated with the

o
ζ+,1 =

1
2

√
1

|s+ 1
2 |

(
SgnxSgny

(√(
s+ 1

2

)2
+ x2 −

(
s+ 1

2

))
− y ěx − x ěy

)
root. Magnitude

converges to 1√
2
≈ 0.707107.



22

Finally, backward iterations of
o
φinv1 with

o

ζ−,0 = − 1
2

√
1

|s+ 1
2 |

(√(
s+ 1

2

)2
+ x2 + s+ 1

2 + x ěx + y ěy

)
produce a period two backward orbit alternating between the points

−1

4
+

√
3

4
ěx +

√
3

4
ěy ←→ −

3

4
−
√
3

4
ěx −

√
3

4
ěy.

The
o
φp = − 3

4 −
√
3
4 ěx −

√
3
4 ěy point is shown in magenta in Figure 7. Since the

J set is invariant under the iteration, points in the J set must map to points
within the J set. We have not proved that the fixed hypercomplex points belong
to the J set. This hypothesis is supported by the visual position of these points
in regions that seem to be on the boundary of the K set. All the points shown
in Figure 7 again seem to lie on the ∂K = J boundary. Many other cases that
are not reported also follow this pattern.

It is not mandatory to use the same root in the backward evaluation of orbits.
We could proceed as in some inverse Julia calculations in C, where one of the two
roots is randomly chosen. The random choice of one of the four hypercomplex
roots in the present case, would fill in many other regions of the K

( o
φ
2
− 1

2

)
set

intersection with the x = y plane (Figure 7). Notice that both, the forward or
backward iterations maintain the equality between director coefficients, so that
all the iterated points originated from the hypercomplex roots must lie on this
plane or its orthogonal version, x = −y.

Several interesting cases arise when applying different roots in the inverse
orbit calculations. Let us undertake just one of them as a curious example.
Consider the point

o
φp = − 3

4 −
√
3
4 ěx −

√
3
4 ěy that is the partner of the fixed

point
o
φinv1 in the period two backward orbit with the

o

ζ−,0 root. If the point
o
φp is backward iterated with the

o

ζ−,1 root instead, the result is again
o
φp. The

point
o
φp is then backwards invariant under

o

ζ−,1! However it is not forward
invariant, since the forward iteration maps it onto

o
φinv1.

6. Self similarity

Self similarity at arbitrarily small scales is a hallmark of fractal structures.
In the Ix-set (S1+2 higher dimensional version of the M-set), we have seen that
the main structure is repeated in similar smaller structures. In dynamic space,
self-similarity in the complex plane often reproduces the form of the boundary or
certain features at different scales rather than the whole object. Self similarity
has been observed in many regions of the three dimensional quadratic fractal
boundary for a wide variety of

o
c values. It is difficult to visualize this feature

on the fractal surface due to its intrinsic ’rough’ fractal nature. It is sometimes
advantageous to limit the fractal rendering to a region in order to visualize the
fractal cross section. These cross sections have an altogether different texture
and colour, thereby producing much higher contrast. At present we are limited
by the software to cross section renderings in planes parallel to the axes. Self
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(a) Viewpoint
o
v = 2+0ěx +

0ěy .
(b) Detail of lower left branch. (c) Further magnification within

this branch.

Figure 8: Self similarity of the K
(o
φ
2
− 1

)
set. The ěx, ěy plane is seen from the s axis with

s ≤ 0.6. The cross shaped patterns on the s = 0.6 plane keep on repeating at different scales.

(a) J
(o
φ
2
+ 1

2

)
set seen from

2− 4ěx + 1ěy

(b) J
(o
φ
2
+ 1

2

)
set seen

from 0− 4ěx + 0ěy

(c) J
(o
φ
2

+ 1
2

)
set seen from 0−
3ěx + 0ěy , lim-
ited to 0 ≤ x ≤
0.03

(d) Julia set for
c = 1

2
. Roots at

1
2
± 1

2
i.

Figure 9: Visualization of the non divergent J set of the function
o
φ
2
+ c, with c = 1

2
.

similarity of the K set in S1+2 in a region near to the scalar axis and one
hyperimaginary plane is perhaps expected because such a plane is close to the
complex plane. For this reason, we have chosen to exhibit self similarity in
a hyperimaginary-hyperimaginary plane region in Figure 8. The constant has
been set at minus one,

o
c = −1+0 ěx+0 ěy. The part of the set shown in brown

streaks is the surface of the volume between −10 ≤ s < 0.6. The white-yellow-
orange cross like features correspond to the s = 0.6 plane, where the rendering
of the set was stopped. The cross like motives are repeated along the diagonals
with different sizes. The brown fibers intertwinings are also repeated again and
again but are more difficult to discern. Two close ups shown in Figure 8, keep
on revealing more and more crossed motives at different scales.
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(a) J
(o
φ
2
+ 1

2

)
set seen from

4 + 0ěx + 0ěy

(b) J
(o
φ
2
+ 1

2

)
set restricted

to 0.74 ≤ s ≤ 0.75, hyper-
roots (25) depicted with red
dots.

(c) 2D rendering of J
(o
φ
2
+

1
2

)
, s = 0.75

Figure 10: Visualization of the non divergent set in dynamic space of the function
o
f =

o
φ
2
+ 1

2
seen from the s axis.

7. The c = 1
2
, non connected set

Consider the non divergent set in dynamic space for the constant
o
c = 1

2 +
0 ěx + 0 ěy. The 3D rendering, shown in figure 9a, reveals a grainy structure in
contrast with the continuous rough surface of the previous examples. A Fatou
dust like disconnected set in three dimensions is appreciated. Although there
are some more or less dense regions, it is possible to ’see through’ in any one
of them. If c = 1

2 , recall that in C, the Julia set is not connected since 1
2 is

not in the M-set. The 3D rendering suggests that, in a similar fashion, since
1
2 is not in the Ix-set, the J set in S1+2 is not connected. This remark will be
discussed in more detail in section 8. Let us consider the well known z = 1

2 ±
1
2 i

two fixed points in C to begin with; they are depicted in red in figure 9d. In
S1+2, the corresponding two copies of these roots in the s, ěx and s, ěy planes
are given by (19c),

o
φS1+1

x
= 1

2 ±
1
2 ěx and

o
φS1+1

y
= 1

2 ±
1
2 ěy. These last two roots

are depicted in figure 9c. 3D renderings limited to thin regions are particularly
difficult to visualize for non connected sets. In this example, if x is restricted
to a 0.01 layer or less, there are hardly any points in the plot. As the thickness
is increased, more bound points are present but the figure is increasingly less
similar to a 2D rendering. A compromise has been chosen, where the layer has
been restricted to 0 ≤ x ≤ 0.03, in order to evince the similarities of the 3D and
2D mappings in figure 9c and the familiar 2D Julia set shown in figure 9d.

In addition to the two copies of the complex like roots, there are four hyper-
complex roots. From (19a),

o
φS1+2\S1+1 =

3

4
±
√
3

4
ěx ±

√
3

4
ěy. (25)

These four fixed points are shown in red in the 2D plot in figure 10c. The 3D
rendering of the K

(
o
φ
2
+ 1

2

)
set, seen straight from the s axis, is shown in figure

10a. The same viewpoint (slightly magnified), but restricted to a thin layer
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0.74 ≤ s ≤ 0.75, gives the image shown in 10b. It is finally this last image that
resembles the 2D rendering 10c in the hyperimaginary - hyperimaginary plane.

8. Conjectures

Differentiability is a necessary condition for a scator function
o
φ
(o
ζ
)
= f0 +

fxěx + fyěy to be holomorphic. According to a differential quotient criterion,
necessary conditions for a function to be differentiable are [19]:

Theorem 8.1 (Fernandez-Guasti, 2018). If a scator function
o
φ : U ⊆ S1+2 →

S1+2 of scator variable
o

ζ in U ⊆ S1+2, is differentiable at the point
o

ζp = z0p +
zxpěx + zypěy, then the scalar part of the function f0 and the director parts of
the function fx, fy, are real differentiable C1 functions that satisfy the partial
differential equations

∂f0
∂z0

=
∂fx
∂zx

=
∂fy
∂zy

, (26a)

∂fx
∂z0

= −∂f0
∂zx

,
∂fy
∂z0

= −∂f0
∂zy

(26b)

∂f0
∂zx

∂f0
∂zy

= −∂fx
∂zx

∂fx
∂zy

, (26c)

evaluated at the point
o

ζp.

The partial derivatives involved in (26a) and (26b), resemble the Cauchy-
Riemann conditions extended to a real and two hyperimaginary dimensions. The
square function does not satisfy conditions (26a), (26b) and (26c). Therefore,
the square function is not holomorphic anywhere in the scator set. However, it

is scator differentiable for points
o

ζp with y = 0, or x = 0 since then all crossed
terms are equal to zero. This result is expected because the s + x ěx + 0 ěy or
the s + 0 ěx + y ěy planes are identical to the complex plane where the square
function is complex holomorphic. The lack of holomorphy according to a dif-
ferential quotient criterion of the square function prevents us from evaluating
its derivatives and their subsequent computation at the critical points. Thus,
the classical fractal classification of points into super-attractive, attractive, in-
different or repelling, depending on the value of its derivative, cannot be readily
performed for the quadratic mapping in the S1+2 scator realm. Furthermore, in
S1+2 it is not possible, according to the differential quotient criterion, to define
Fatou or Julia sets in terms of normal meromorphic families, because the scator
quadratic function is not meromorphic. The scator holomorphic functions in
S1+2 have been divided into three families [20]: the components exponential
(cexp) function, linear functions and exceptional solutions. The cexp function
holomorphy permits the multiplicative representation of scators. Whereas the
exceptional solutions involve single variable arbitrary functions of one variable
[20]. The scator holomorphic functions set, according to the differential quotient
criterion, is considerably larger than their counterpart in Clifford Algebras.
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Nonetheless, an individual investigation of the forward orbits of several tens
of points in S1+2 consistently showed the following outcome after 25 iterations:
i) For

o
c = − 1

2 , all sequences either approached
o
φS1+0 = 1

2 −
√
3
2 ≈ −0.366 · · ·

(∈ K set) or become very large > 109 (∈ F set). ii) Points in the S1+2 \S1+1 set
converge faster than points in S1+1. To illustrate this latter assertion, the point
1+0.3 ěx+0.2 ěy after 25 iterates is equal to ≈ −0.36651−4.17×10−9 ěx−8.74×
10−4 ěy, while the point 1+0.3 ěx+0 ěy is equal to ≈ −0.36804+9.20×10−4 ěx
after the same number of iterates. For all the non divergent probed points, the
interior fixed point 1

2−
√
3
2 plays the role of an attractive point in S1+2, just as it

does in the complex domain. The partial directional derivatives of the quadratic
function

o
φ
2
+

o
c depending on the direction where from the limit is taken are [19]

∂

∂s

( o
φ
2
+

o
c
)
= 2s

(
1− x2y2

s4

)
+ 2x

(
1 +

y2

s2

)
ěx + 2y

(
1 +

x2

s2

)
ěy,

∂

∂x ěx

( o
φ
2
+

o
c
)
= 2s

(
1− y2

s2

)
+ 2x

(
1− y2

s2

)
ěx + 4y ěy,

∂

∂y ěy

( o
φ
2
+

o
c
)
= 2s

(
1− x2

s2

)
+ 4x ěx + 2y

(
1− x2

s2

)
ěy.

Recall from Subsec. 2.2 that the multiplicative inverse is
o
φ
−1

=
o
φ
∗∥∥ o

φ
∥∥−2,

thus 1
ěx

= −ěx, 1
ěy

= −ěy.On the scalar (real) line, x = y = 0, all three
derivatives are equal to 2s. The magnitude of the derivative for the fixed point
o
φS1+0 = 1

2 −
√
3
2 is 0 <

∣∣1−√3∣∣ < 1; therefore, it is an attractive point according
to the usual classification. Analogous results hold for points in the s, ěx or s, ěy,
for the roots

o
φS1+1

x
= 1

2 ±
1
2 ěx and

o
φS1+1

y
= 1

2 ±
1
2 ěy. Whether this criterion

suffices to claim that these points are attractive in S1+2, remains to be seen.
For the hypercomplex roots, the partial derivatives are not equal, for example,
if s+ xěx + yěy = − 1

4 ±
√
3
4 ěx ±

√
3
4 ěy,

∂

∂s

( o
φ
2
+

o
c
)
= 4± 2

√
3ěx ± 2

√
3ěy,

∥∥∥ ∂

∂s

( o
φ
2
+

o
c
)∥∥∥ = 7.

and (an equivalent result holds for ∂
∂yěy

)

∂

∂xěx

( o
φ
2
+

o
c
)
= 1∓

√
3ěx ±

√
3 ěy,

∥∥∥ ∂

∂xěx

( o
φ
2
+

o
c
)∥∥∥ = 4.

Although it could be claimed that all three partial directional derivatives satisfy
the criterion of repelling points, due to the different values the function is not
differentiable at these hypercomplex points.

Many renderings have been performed with different values of the constant
o
c. In all trials, the K set appears connected if

o
c belongs to the Ix-set, the only

exception being for large nilpotent points of the form
o
γ = ±g± gěx± gěy, with

g roughly larger than 2. For
o
c values not in the Ix-set, the J set appears like
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Cantor dust, some regions more densely populated than others. The J
( o
φ
2
+ 1

2

)
set, shown in section 7, being representative of this type of sets. If

o
c is increased,

the Cantor dust is much more thinly populated to the point that it becomes
almost indiscernible. From the above discussion together with the numerical
evaluation of many J sets, the following two conjectures seem to hold:

Conjecture: The Ix-set, provided that nilpotent points in parameter space
are discarded, is the set of parameters where the J set is connected.

Conjecture: The fundamental dichotomy is true in S1+2 scator algebra, the
J set is either connected or there exist infinite separate sets.

9. Conclusions

Novel two and three dimensional renderings of the quadratic iteration in
S1+2 dynamic scator space have been studied and depicted. The sets reveal an
intricate fractal boundary that is not easy to visualize due to its complexity.
The spikes present for many

o
c values, have been described in terms of nilpotent

elements at the mth iteration. The J set for the origin has been shown to be
equal to the unit isometric cusphere scator surface. Fixed points have been eval-
uated invoking the solution to the scator quadratic polynomial equation with
real coefficients. The number of fixed points is increased due to the existence
of four hypercomplex roots if |4c| > 1. Some of the main features have been

exemplified with two sets, K
( o
φ
2
− 1

2

)
and K

( o
φ
2
+ 1

2

)
that seem to be connected

and disconnected respectively. Other parameters are likely to reveal new fea-
tures of the 3D sets. These two representative examples were chosen on two
grounds: Analytical solutions for the fixed points are possible for scalar values
of the constant,

o
c = cs (Lemma 4.1). Values of cs = ± 1

2 such that |4cs| > 1 have
been chosen so that there exist hypercomplex roots. These roots are emergent
solutions without a counterpart in the complex set. For these values of

o
c, the K

interior attractive fixed point in C also acts as the attractive fixed point for the
forward orbits in S1+2. The algorithm for evaluating inverse orbits for arbitrary
o
c ∈ S1+2 has been derived (Lemma 5.1). Sets of points very close to J in S1+2

can thus generated from inverse orbits of arbitrary points. Inverse orbits of the
hypercomplex fixed points reveal a richer dynamic behaviour compared with
their 2D counterpart. An infinite number of points belonging to J in the x = y
plane can be generated with this procedure. Sets in dynamic space exhibit self
similar boundary shapes at different scales.It has been conjectured that some of
the fundamental fractal theorems in the complex set are also valid in the S1+2

scator set.
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Appendix A. Scator square roots in additive variables

The square roots
√

o
φ =

√
s+ x ěx + y ěy of a scator

o
φ ∈ S1+2 in the additive

representation with additive variables are given by Lemma 4.2 in [14]

√
o
φ =

o

ζ±,0 = ±1

2

√
1

|s|

[√(√
s2 + x2 + s

)(√
s2 + y2 + s

)
+ Sgnx

√(√
s2 + x2 − s

)(√
s2 + y2 + s

)
ěx

+Sgny

√(√
s2 + x2 + s

)(√
s2 + y2 − s

)
ěy

]
, (A.1a)

and from the π-pair symmetry,

√
o
φ =

o

ζ±,1 = ±1

2

√
1

|s|

[
SgnxSgny

√(√
s2 + x2 − s

)(√
s2 + y2 − s

)
− Sgny

√(√
s2 + x2 + s

)(√
s2 + y2 − s

)
ěx

−Sgnx
√(√

s2 + x2 − s
)(√

s2 + y2 + s
)
ěy

]
. (A.1b)

From these expressions, with the substitutions s → (±g − c0), x → (±g − cx),
y → (±g − cy), the coefficients of

o
φ1 that produce a square nilpotent term on

the second iteration are obtained. If
o
c = c0, and the director components of this

constant are zero, cx = cy = 0, the roots simplify to (18a) and (18b).
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