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The elliptic scator algebra quadratic iteration is evaluated in 1+2 dimensions in dynamic space.
There exists a non divergent K set in the scator three dimensional space with a highly complex
boundary J = 0K. Two and three dimensional renderings of the sets in dynamic space are
published for the first time. The sets exhibit a rich fractal boundary in all three directions.
Some of the salient features of the sets can be described in terms of square nilpotent iterations.
The Julia and filled in Julia sets are identically reproduced at two perpendicular planes where
only one non-vanishing hypercomplex director component is present. The fixed points of K in
S'*2 can be obtained from the roots of a quadratic equation. In S'*2 there can be, in addition
to the usual complex roots, hypercomplex roots that give rise to four additional fixed points.
The inverse orbits of the hypercomplex roots reveal an interesting complex structure. The K set
of the origin is equal to the unit magnitude scator surface, named a cusphere. The J set exhibits
self similar structures in 3D at different scales, typical of fractal phenomena. The ix set, is the
three dimensional equivalent of the M-set in three dimensions. It is conjectured that the ix-set
with some restrictions, is the set of parameters where the J set is connected.

Keywords: Hyper-complex numbers; Imaginary scators; Quadratic iteration; Julia set; Discrete
dynamical systems.

1. Introduction

The iterated quadratic mapping in the imaginary scator set, produces a rich and complex structure in

parameter three dimensional space [ , ]. In contrast, other algebraic structures with
dimension higher than two, such as quaternions, produce a disappointing surface of revolution of the
M-set in three dimensions | ; , ]. There have other efforts to
extend two dimensional fractal structures to three dlmensmns such as ternary algebra | , 1,
triplex algebra | ; ) | and variations of them | ,
Visualizations of these sets, in partlcular quasi-Fuschian fractals | ) | and the mandelbulb, have
received wide public exposure | , ; , ]

In this communication, the three dimensional product and addition operations of imaginary scator algebra
are invoked to evaluate the quadratic mapping in dynamic space. Scator algebra is a finite dimensional

*permanent address of the author.
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algebra over the reals with a multiplicative identity, thus fulfilling the hypercomplex algebra Kantor and
Solodovnikov criteria except for the distributivity of the product over addition [

]. Scator elements can thus be viewed as hypercomplex numbers in 1+n dimensions if the dlstrlbutwlty
condition is relaxed. For n = 2, many of the singular properties of this algebra are already present. The
scator product is commutative and all elements except zero and infinity have an inverse. Nonetheless, scator
algebra is no longer a division algebra because it has zero products of non zero factors. The scator product
is associative in the multiplicative representation but not in the additive representation. The algebra
is endowed with a second order involution. This feature can be used to establish an order parameter.
These peculiarities do not prevent the scator number system from generating consistent iterated quadratic
mappings with a rich fractal structure in parameter space | , ]

Scator algebra also produces remarkable iterated quadratic mappings in dynamic space. This is the subject
matter of the present communication: In section 2, the essentials of imaginary scator algebra in 142
dimensions are presented. The scator quadratic mapping is described in section 3. Three dimensional
analogues of the Julia and filled in Julia sets are presented in this section. 2D and 3D renderings illustrate
some of the main features of these sets. Square nilpotent points are discussed in subsection 3.2. The
fingerprint of the origin is shown in subsection 3.3. Fixed points in scator dynamic space are described in
section 4; hypercomplex roots produce extra fixed points with very interesting properties that coexist with
the real or imaginary fixed points. Inverse orbits are discussed in section 5, the existence of four possible
roots permits the evaluation of many points in the boundary set. Self similar objects within the K set
are set forth in section 6. An example is expounded in section 7, where the K set exhibits a Cantor dust
structure. Section 8 is dedicated to some conjectures and conclusions, given the difficulties encountered to
establish formal proofs that require holomorphy.

2. Imaginary scators

In the additive representation, scator elements in 14+2 dimensions are written as the sum of three compo-
nents,
cZ:s—i—gcéx—i—yéy, (1)

where s,z,y € Rand &,, &, ¢ R. The first component is the scalar component, while subsequent components
are named director components | , |. Scator elements are decorated with
an oval placed overhead'. Addition of scators is defined by the sum of coefficients in each component

o
a+ B = (ap + 4285 + ayey) + (bo + byey + b,&,) = (ag + bo) + (az + bs) , &, + (ay + b,) &,. Scator numbers
satisfy commutative group properties under addition in R*2.

o o
Definition 2.1. The extended scator product &ﬂ of two scators, o = ap+az €, +ay &y and = by +b, &, +
b, €, is
y €y 15,

OO xbx b b X bit ~
CY,BZ(I()[)() 1—a 1—M —|—a0b0 _M CL7+7 &
agbg agpbg aobg ap by
azb a b
b (1 — == Yy Y )e,. (2
+a00< aobo><ao+bo)ey @)

If there are coefficients equal to zero in the scator factors, the director coefficients limits should be taken
prior to the scalar coefficients limit.

The scator product is usually defined in the S'*2 set, where infinity is avoided. The extended scator product
allows for divergent products.

W overset{o} in IATEX lore
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Example 2.1. If a, = b, =0,

lim (&,@) = (aobo — ayby) + (aybo + aoby) éy.

a;—0,b;—0,
The usual complex product in C is recovered. The imaginary unit is &,. An analogous result is obtained if
ay = by = 0, but the imaginary unit is then &,.

Example 2.2. The limit ag — 0 if aza, # 0, gives divergent coefficients in all three components,

o
lim (&8) = : &y
aolglo(oz,é’) 00 + 00 €, + 00 €y

There are then scator factors with finite coefficients whose product admits infinite coefficients.

Example 2.3. If ag = 0 and a, = 0. The director coefficient limit should be taken first, thus

az—0

. 09 bx - -
lim (aﬂ) = (agbo — ayby) + (aobo — ayby) (bo) €, + (aybo + apby) €y;
Thereafter, the scalar component limit is evaluated

lim ( lim (&é)) = —ayb, — ayb b—mé;E + ayboé,. (3)

ap—0 \a;—0 ybo
Example 2.4. If one factor has vanishing director coefficients o= ap+0¢&; +0e, = ap,
o o o . .
af = agf = agbg + agb.€, + aobyey.

o
The ag component produces a scaling of all the § scator components. Hence it is rightly named, the scalar
o

component of the scator. 1 =1+ 0¢&, 4+ 0&, = 1 is the multiplicative neutral.

o
Example 2.5. If a,b, = ayb, = apbg, then 346 =0+ 0¢é,; + 0¢é,, the scator product is zero. Thus, there
exist zero products of non zero factors.

2.1. Multiplicative representation of scators

The multiplicative representation of scators is analogous to the polar representation of complex numbers
in 141 dimensions,

3% = 90064‘0“‘ €z Py éy’ (4)

where e is the complex exponential function. g is the scator magnitude also named the multiplicative
scalar, ¢, is the angle of the scator projection between s and the &, axes, ¢, is the angle of the projection
between s and the &, axes. In the multiplicative representation, the product of two scators is evaluated by
performing the product of the magnitudes and the addition of the multiplicative director coefficients with
the same director unit | , ,

&é _ (aoeazéz eayéy> (506,Bméz eﬂyéy) _ aoﬁoe(az—kﬁm)éze(ay—i-ﬁy)éy ) (5)

The multiplicative scator components having the same director unit €, or &,, satisfy the addition theorem

for exponents. However, the addition theorem for exponents does not hold for scators with different director
units, i.e. e¥= €z oPy Sy + e¥e €xtpy &y

The additive (1) and multiplicative (4) representations of scators are related by
@ = poe¥ e ePu® = ») cos g COS Py + 0 COS Py sin @y €, + Yo cos g sinp, €, =s+xé, +yé,.  (6)

From this expression, it follows that if s = (g cos ¢, cos ¢, = 0, then g% =0or c,op has only one non vanishing
director component. Furthermore, if the two director components do not vanish, ¢g cos ¢, sin ¢, # 0 and
o €os g sin p, # 0, then the scalar component is necessarily also different from zero.
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Definition 2.2. The scator set S'? C R3, is the subspace where the scalar component is not zero if the
two director components are different from zero,

SHQ:{nop:s—i—xém—i—yéy, s,x,yeR:s#Oifx,yyéO}. (7)

The S'*2 set avoids divergent products (like the one in Example 2.2). This set was labeled with the letter
E in some of the earlier manuscripts.

Remark 2.1. The scator additive and multiplicative representations are equivalent in the S'*2 scator set,
except for the kernel of the transformation.

2.2. Magnitude

The conjugate of the scator is given by the negative of the director components leaving the scalar com-
ponent unchanged in either representation. In the additive representatlon (p = 5 — 1€, — yeé, is the
conjugate of cp = s+ x€; + yeé,. In the multiplicative representation, cp = ppe Pr e e %y is the conju-
gate of goo = ppe®= €re¥y € The magnitude of a scator is equal to the positive square root of the scator times

. . o 0 o* T . . o T .
its conjugate HgoH = \/pp . In the multiplicative representation from (5), ‘ = (g, the multiplicative
scalar is thus the scator magnitude. In the additive representation, the square magnitude is

. 2 2
16| = 58" = &2 <1+‘;) <1+~ZQ>. (8)

-1 * — -1 *
The multiplicative inverse, from (8) is <Op = goo H(opH > In multiplicative variables cop = goo /3 and in

terms of additive variables, the inverse is

o—1 _9 33'2 ! y2 ! o*

A scator is invertible except if all additive components are zero or if s = 0 when xy # 0.

Definition 2.3. The estended scator set S'2 = R? U {oc}, allows for all three scator coefficients to be in
the reals plus infinity

S1+2:{§%:3+xéx+yéya S,$,y€RU{OO}}, (10)

The points at infinity are attained if any of the scator components becomes infinite, i.e. s — oo and/or
x — oo and/or y — oo. The magnitude of these points is infinite. Although the set of points with zero
scalar component s = 0 and two nonvanishing director components xzy # 0 have finite coefficients, their
magnitude is also infinite. Elements in S'*2 \ $'*2 have divergent magnitude. This state of affairs has
led to the concept of divergent vicinity whenever the zero scator is involved | ]
The element 0 + 0¢&, + 0 €&, has a divergent vicinity since the magnitude of 0 + dz &, + dy &, is mﬁmte if
§x,0y # 0. The scator magnitude does not diverge in S'*2.

Remark 2.2. There exists a scator multiplicative representation for elements in the S'2 scator set but not
in SI+2\ §1+2,

Let us mention two propositions that will be useful in the coming sections:

2
Lemma 1 [Fernandez-Guasti, 2016]. The only non trivial square nilpotent elements <0,0 =0+0e,+0¢&, in
1+2 dimensional imaginary scator algebra are elements whose three components have equal absolute value,

g%z:l:g:l:gémzl:géy.

Corollary 2.1 [Fernandez-Guasti, 2016]. The square of an invertible element is invertible if it is not square
nilpotent.



MUYV VL &Ry SV AV el A e AL A A

Imaginary Scators Quadratic Mapping In 1+2D Dynamic Space 5
3. Iterated quadratic mapping

o _ _
Consider a function f, : S™2 — S1*2 to be a scator function of scator variable.

o
Definition 3.1. The non divergent set K ( f C) in dynamic space for imaginary scators in 142 dimensions
is given by

K(}.) = {cOpESHQ vm e, || (@) ﬁ»oo}, (11)

om

om o o o o
where f. denotes the m-fold composition f. = fc(fC (fC e )) of the function f, € S!*+2.

o
K ( f c) is a three dimensional generalization of the filled in Julia set. In this generalization, the Julia set is
o

o
again defined as the boundary of the filled in Julia set J ( f C) = 0K ( f C). This boundary is now embedded
— o
in an S three dimensional space. The filled in K ( f C) set has been defined in terms of a non divergent
condition rather than a bounded one. This will be relevant as we shall see further down because nilpotent

points can have very large magnitude but are nonetheless in the K set.

2
The square of a scator g?) s + xé, + yé, is obtained from the product of two equal scators, c% =

5+ zé, + ye % From Eq. (2
y

02 o 22 y? w2\ 22\
© =5 <1—82) (1—82 + 2sx 1—8—2 €, + 2sy 1—8—2 €y. (12)

2
satisfies q()\gop) = )\Qq(g%), A € R. In the multiplica-

The square function mapping g : S™*" — S+ & 5 &
tive representation, the square of a scator is
2 . .
QOO — 90(2) 62§0xew 6250999 . (13)
o 2 _ _
Consider the family of maps f, : g% — <0p + ¢ from S™2 to S'*2 where the variable g% and the constant ¢
are scator elements. The iteration procedure in dynamic space is obtained by fixing an initial constant ¢
and evaluating, for each point <,00 in the scator space, the quadratic recurrence relationship

O2 ]

o
Pm+1 = Pm +c. (14)
Non divergent points obtained for an arbitrary number of iterations comprise the K set in S'2. In terms

of the additive coefficients, for each point c%l =51 +x1€; +y1 € and ¢ = cs + ¢z €, + ¢y €y, the quadratic
iteration recurrence relationship for the scalar component is

2 2
T
Smt1 = S, (1 - 5;”) ( - zgn> T Cs (152)
m

m

and for the director components,

2
Tl = 28mm (1 - yg”) + Ca, (15b)
m
22
Ymi1l = 28mYm <1 - ?) + ¢y (15¢)
Sm

The iteration (15a)-(15¢) has been implemented in the Mandelbulber (version 2.20-dev) three dimensional
fractal visualization program. Very intricate surfaces are obtained that are difficult to handle by ray tracing
programs. The processing power required to generate 3D fractals is greatly increased compared with 2D
renderings. It is necessary to extend the two dimensional image grid to three dimensional space. An image
with 103 pixels resolution in each axis, requires 10° voxels (1000 million points!). Thus, the iteration of
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a much larger set of points is required to begin with. Thereafter, ray tracing is necessary to establish
the observer point of view, with the concomitant occlusion of interior points or points that lie behind a
particular surface from the observer point of view. The capability of using parallel GPU processing using
OpenCL has greatly enhanced the rendering velocity.

o
Two dimensional renderings of the 3D K ( f c) set can also be made at a particular 2D plane with standard

plots. For example, the set in the (s, &,) plane at a constant xy€, value is obtained by evaluating the (15a)-
(15¢) triad for s 4+ zp€, + yé,, for all s,y values. Inclined planes can also be rendered if a condition of the
form x = my, where m is constant, is imposed. Notice that in these cases, the plane under consideration
has no breath, i.e. it is fixed to a single value. In contrast, 3D renderings require voxels, that is 3D tiny
boxes; in this case, a plane can be approximated only to within the thickness of the minimum voxel size.

3.1. Non divergent set in dynamic space for ¢ = —0.5 + 0&, + 0.5 &y

Consider, as an initial example, the quadratic iteration non divergent set in dynamic S'*? scator space

2
K (cop + 2) for the hypercomplex point ¢ =—-054+08& + 0.5 €,. The rendered set, observed from v =
3 — 8é&, + 1é&,, is shown in figure 1. This set is equivalent to the filled in Julia set in the complex plane

2
Fig. 1: Non divergent set in 3D dynamic scator space, K(g% + gooc) €S2 of the ¢ = —0.5+ 0&, + 0.5 é,

hypercomplex point, seen from D =3-868, +1 é,. Image generated with the 'Mandelbulber’ rendering
program.

K (z2 + zc) € C, zz. = —0.5 4+ 0.5¢ but extended to three dimensional space. The fractal nature of the
surface makes it very difficult to produce an accurate ray tracing reflection due to the boundary roughness.

A close up of the central region is shown in figure 2a. The surface exhibits an intricate pattern of streaks
in different directions. There is, so far, hardly any resemblance of this figure with a filled in Julia set. It is
possible to limit the rendering to a region in the mandelbulber program. In figure 2b, the set is limited to
0 <2 <10 region in the &, direction and left in the default £10 limits in the scalar and &, axes. The set
inside colouring, established by the programmers, is determined by the value at the end of the orbit trap
iterations. The surface cut at = 0 begins to look a bit more familiar. If the observation point is located
on the &, axis, figure 3a is obtained and if the rendering is further restricted to a region very close to the
x = 0 plane, figure 3b is obtained. In a 3D rendering, the voxels have finite size in all three directions, in
fact, they are usually tiny cubes. This means that the = 0 plane cannot be chosen with zero breath. It
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(a) Rendering for values within £10 in all three variables. (b) Rendering restricted to the 0 < z < 10 region in the &z
axis.

2
Fig. 2: K(g% + g) closer detail of the ¢ = —0.5+0&, + 0.5 é, hypercomplex point, seen from 0 =0.75 —
26, +18,.

2
(b) K(g% + 3) seen from 0 = 0 — 2&; + 08&, but restricted
to the minimum voxel size in z, —0.003 < z < 0.003.

oy . . _ . . . 2
(c¢) Familiar filled in Jullla set of the z = —0.5+ 0.5¢ point in () K(g?; + 8) evaluated at the plane @ = s + 0.00365 + Yy,
the complex plane obtained from a standard 2D plot. with a standard 2D plot.

2
Fig. 3: K(g% + g) detail of the ¢ = —0.5+ 0&, + 0.5 é, hypercomplex point. Comparison of a thin 3D slice
seen from the &, direction, the Julia set in the complex plane and a 2D rendering with an offset of 0.003
in the &, hypercomplex plane.

has to encompass a finite albeit small depth. Some kinks, particularly evident close to the s = 0 line, are
a consequence of this finite depth. For comparison, a filled in Julia set K (z.) for z. = —0.5 + 0.5¢ in the
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complex plane is shown in figure 3c. The two sets are remarkably similar, the irrelevant filled in colouring
making for most of the difference. The minor differences, mainly observed close to s = 0, but present in the
whole frontier when looked in detail, can be attributed to the finite depth of the 3D rendering. To confirm
this assertion, the voxel size is estimated to be 6.1 x 1073 per side. The 3D program is then evaluating

the 2 = 0 plane with £3.05 x 1072 resolution. In figure 3d, a 2D rendering at the g% =x+0.003¢e, +ye,
hypercomplex plane is depicted. This set exhibits the kinks absent in the Julia set, but present in the 3D
rendering.

3.2. Nilpotent elements

Besides the central bundle, there are eight straight long filaments extending from the center up to large
coordinate values. There are also smaller spikes that describe hyperbolic like curves. These broad features
can be understood in terms of nilpotency. The constant ¢ is obtained on the first iteration if the initial
point is square nilpotent,

o 02 o (0]
P9 = Ppinn +C=C.

2 2
Thereafter, the iterations follow the orbit of the point ¢ in parameter space, i.e. {cfam-l, 8,8 + 8, (3 + 0)2 +

8, ...}. This sequence does not diverge if the point belongs to the Ix-set. The orbit of all nilpotent initial

points after the first iteration is the same and is the sequence of ¢ in parameter space. This set, coined
here as the Iz-set?, has been described in an earlier communication | , . The Iz-set
is the quadratic iteration bound set in parameter S'*2 scator space. The Mandelbrot set is a subset of the

Ix-set, M C Ix. If the constant ¢ is in the Ix-set, it is a bound point and therefore nilpotent points will
be in the K (&2 + 8) set. From Lemma 1, nilpotent elements have equal absolute value of the scalar and
director components. The four cop = f; = £g £ gé, & gé, straight lines are tilted £45° with respect to the
s,€,; and s, &, projections. The azimuthal angle with respect to any of the axes is arctan (:l:ﬂ) ~ +54.7°.

2
The eight main spikes present in the K (g?) + 8) sets for ¢ € Ix-set, are due to this nilpotent feature. These
spikes extend to arbitrarily large values of g.

Lemma 2. A point g% whose mt" iteration is square nilpotent belongs to the K set if the constant ¢ does
not diverge in parameter space.

Proof. For a point that is square nilpotent after m iterations, the m + 1 iteration is equal to g,
02 o

Oy +Cc = e Thereafter, the sequence is equal to that of ¢ in parameter space. The forward orbit is
2 2
{(Opl, <OpQ, cee (Zm, copm + ¢ = g, ¢+ g, ...}. Therefore <Op does not diverge in dynamic space if ¢ does not

diverge in parameter space. H

Lemma 3. There is no upper bound for the set of points that are nilpotent upon the m'" iteration.

Proof. If copm is square nilpotent, from Lemma 1, its additive components must have equal absolute value,
@, =~ =+g+gé, + géy. The magnitude of 5 from (), is H%H = 2} g‘. The multiplicative angle variables

are obtained from the quotient of the directors over the scalar component, 7, = -, = arctan <§> = 7. The

T . . o .
multiplicative representation of the scator « is then

&y T &,

INE]
INE]

’(;/:296 e

2Ix is pronounced ish, like in lavish.
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2 2
Consider the constant ¢ to be much smaller than any of the g%j iterates, so that g%j +om~ &))j. Upon each

2m
iteration the exponent is doubled, goom = ’[;/ = gool . The initial point c%l is thus obtained from inversion of
this equation
1
o o0 gm o0 3m
P1=Pm =7 -
From the Victoria Theorem in the multiplicative representation | , ], the q"" root of

o . .
@ in S'*2 is

1 3 -\ ¢ 1 1 1
P = <sooe%ewe%ey> " = ol exp L} (2 + 277y + o) éx] exp [q (py + 271y + 0) éy} ;

1

where 1,7y € Z, from 0 to ¢ — 1 and o is 0 or 1. In the particular case of %2 ,

% m 1 Y 1 T
7= 7 /2|g] exp [Qm (Z + 27y + O'7T) éx] exp [Qm (Z + 27y + O'T[') éy] . (16)
1
The magnitude of this scator is Hgoolﬂ = H%Qm = 27/ 2‘ g{. Since g can be arbitrarily large, the magnitude

of the initial point c,%l does not have an upper bound. W

Corollary 3.1. The £ and £ asymptotes of nilpotent points upon the mt iteration are tan (Qm% mod %)

Proof. From the multiplicative to additive representation (6) of the roots given by (16),

S m 24 27r, +om T +2rr, +om
copl:s—kxéz—kyéy:%Q = 2\/2‘g‘cos<42nf)cos<42nf)

m T4 2nry+om\ . (T4 2mry+om) |
+ 2\/2}g‘ cos (42my) sin (42;) €
m T4 2nry+om\ . (T4 2nr,+om)
+ 2 2‘9’ cos <42nf> sin <42j> é,. (17)
The quotient of the directors over the scalar component are

T ™ ™ Y ™
g:tan (Wiﬁrx), g:tan<2m+2:|:27m7ay).

2 2
The éj + 0 g%j approximation is extremely crude. A richer structure is obtained if the constant is not

neglected, although the analytic expressions become rather awkward upon iteration. Consider points that
. . . 02 o\? 02 o . .
are nilpotent on the second iteration, (gol + C) = 0, then (cpl + c) ; is square nilpotent and thus the
n

absolute value of its coefficients must be equal,

2
By = (g%l +Z)m1 =5 = g+ go, £ g6,

2 02

2
The forward orbit for these points is {copl, (g%l + 8) ,g,g + g, (c + 0)2 + g, ...}. For ¢ =co+ Crby + Cy€y,

nil

the initial point g%l, has to satisfy

=5t )+ Go— et (g )y
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The square roots \@ = /s +xé&; +yé, of ascator <Op € S'2 in the additive representation with additive
variables are given by [ ,

Vo boomap g (1 (v
+Sgnx\/(\/32+x2—s>< 82—|—y2+3>é$
—|—Sgny\/< s2 + a2 + s) (\/32 +y2 — 3) éy] , (18a)

and from the n-pair symmetey,
imtam sy [smesan (Vi) (V-
s (Vo s 4 5) (VT4 - o),
g [(VT T 5 (V2 +s)éy] sy

From these expressions, with the substitutions s — (g — ¢p), * = (g — ¢z), y = (£g — ¢y), the coeffi-
cients of c%l that produce a square nilpotent term on the second iteration are obtained.

2 2
Returning momentarily to the first order approximation, in the limit when g > ¢y, ¢z, ¢y, c,ool + ¢~ gool =

g + gé; + gé&,, the roots of a square nilpotent element \/ +g & gé&,; + gé, are

gi,o:i\ém [(\@Jrl)i &, + éy], Zi,lzi\ém [(\/5_1):F o T éy]‘

There are thus spikes at

1 T 1 3w
—— ) = 4+— = 422.5°, and arctan | +——— | = £— = £67.5°
V2 + 1) 8 < V2 - 1> 8
with respect to the s, &, and s, &, projections. These results are equivalent to (17) with m = 1, but written
in terms of additive variables.

arctan (j:

If the constant ¢ is a scalar ¢ = co, (¢, = ¢y = 0), from (18a) and (18b), the points that are square nilpotent
on the second iteration are

0 1 1 . .
Cio:i"\g—og\ {i <\/2g2—2gco+cg+(g—co)> igexigey], (19a)

and from the m-pair symmetry,

0 1] 1 L
1= 3\ 7 e [i (\/292 —29c0+c§— (9 - 60)> + g€, igey} : (19b)

A plot of these points for —30 < g < 30 and &, &, coefficients with equal sign is shown in figure 4. A
similar plot tilted at 90° is obtained for &, &, coefficients with opposite sign. The hyperbolic like curves in
figure 4 are qualitatively identified with some of the fibre bundles shapes in the various K sets shown in

2
this work. The plots specifically correspond to nilpotent points on the second iteration of the K (g% — l)

2
set described in subsection 4.1.
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o o
Fig. 4: Roots (1 o and (4 ; for director components with equal signs, co = —2 in Egs. (19a) and (19b).
These lines correspond to nilpotent points on the second iteration for —30 < g < 30. Nilpotent lines on
the first iteration are shown with dotted lines.

3.3. The fingerprint of the origin.

Consider the constant point to be the origin, c=0+08&, + 0é,. The quadratic iteration is then

o 02

Pm+1 = Pm:
From the multiplicative to additive representations (6) and the square of a scator in the multiplicative
representation (13), the square of a scator is

2 v .
g% = 90(2) 2P €z 020y €y — go% [cos (2¢z) cos (2py) + cos (2¢y) sin (2¢;) €, + cos (2¢,) sin (2¢,) €] .

2
Its magnitude is Hgoo H = 3. The doubling of angles produces a scator rotation (not an Euclidean rotation)

2
in the s, &, and s, &, planes that does not alter the scator magnitude. A repeated iteration <Opm 11 = &m will
then make the magnitude increase indefinitely for Hg%H > 1 and will decrease monotonically for HQ?DH < 1.

The magnitude will only be invariant for unit magnitude scators HcOpH = 1. The set for the origin in dynamic
space should then be the isometric surface. This is indeed the case, figure 5a shows the 3D rendering of

2
the J (g% ) set for ¢ =04 08&, +0 é,. For comparison, the cusphere surface, drawn for unit magnitude from
2 2
Eq. (6), is shown in figure 5b. The J (aop ) set is compared with the isometric surface rather than K ((op )
because it is the boundary J = 0K that is actually equal to the cusphere surface.

The J set for the origin in S'*2, is a higher dimensional analogue of its counterpart in the complex plane.
In C, the Julia set of the origin is a unit circle, i.e. the constant Euclidean metric in 2D. Recall that the
constant scator metric (8) degenerates onto a circle for x = 0 or y = 0. In 1 + 2D, the constant scator
magnitude departs from the sphere (the 3D Euclidean constant metric). The cusphere is the constant scator
magnitude surface for elliptic scators in S'*2.

4. Fixed points

2
Lemma 4. The fized points in S'™2 scator space for the quadratic iteration <Opm+1 = copm + 3, provided that
the constant ¢ = c + 0é; +0é, is a scalar are:
If |4c| > 1, (four hypercomplex roots)

1 1 1
(,00S1+2\S1+1 = <C + 4> + ZV 16¢2 — 1eé, + Z\/ 16¢2 — 1éy; (20a)
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(@) J($;2) seen from 3 — 1.4 — 2,58, + 0.78,. (b) Qusphere drawn from parametric plot of Eq.
(6) with g9 =1

Fig. 5: Bound set for the origin ¢=04+08,40 é, and the cusphere rendered from the unit scator magnitude

condition, ||c,00|| =1.

If 4¢ < 1, (real roots),
1 1
Psiro = 5 E §\/1 —dc; (20b)
If 4c > 1, (two copies of the complex like roots),

11 11
Py = 5 £ 5 Ve~ le, Pgirr = 5 £ 5 Vic—le,. (20¢c)

Proof. The point ¢ is fixed if <Opm 1= g%m in the quadratic iteration. The polynomial to be solved is then

O2 o

¢ —p+c=0, (21)

where g% € S'*2. The scator solutions to this polynomial are given by Theorem 1 in [Ferndndez-Guasti,
2021b]:

2
Theorem 1 [Fernandez-Guasti, 2021]. The second order polynomial ap +bp+c =0, where
goo € S™2 s an elliptic scator and a,b,c # 0 are real coefficients, has the following roots:

If |4ac| > v?,
0 dac + b? (4ac)® — (b2)? (4ac)? — (b2)?
= 4L\ T8y, 22
Fstrnst dab 16222 © 16a22 (220)
If 4ac < b2,
0 b b2 — dac
- 22b
Peiro 2a 2a ' (22b)
If 4ac > b?,

o b V—b?+4ac. o b vV—b?+4ac.
SOS%Jrl = —% + Tez, QDS%Jrl = —% + Tey. (22C)
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For the fixed points quadratic polynomial (21), a = 1,b = —1. From (22a)-(22c), the solutions (20a)-(20c)
are obtained. W

In contrast with the quadratic polynomial in the complex field, where the roots are either both real or
both imaginary, the hypercomplex solutions can coexist with the real or complex like solutions in S!*2. We
refer to hypercomplex roots to those solutions where the scalar and both director components are different
from zero.

o If —i <c< %, only the usual two, possibly degenerate, real solutions exist. Outside this region, there are
additionally four hypercomplex roots.

e For c < —i, there are six fixed points. In addition to the two real points, there are four fixed points due
to the hypercomplex roots. These point lie in the &, €&, plane in the negative s semispace at s = ¢ + %.

e For ¢ > %, there are eight fixed points. Four fixed points, two in the s, &, plane and two in the s, &, plane.
These points correspond to the usual solutions in the complex plane, but there are now two hypercomplex
planes sharing the scalar axis. There is no precedence of the two hyperimaginary axes, the two hyper-
imaginary units €, or &, become identical to the ¢ imaginary unit if only one (hyperimaginary) director
component is present. In addition, there are four hypercomplex roots in the positive s semispace at the

s=c+ 4 plane. There exist hypercomplex roots (|4ac| > b?) whenever there exist complex like roots
(4ac > b?).

The hypercomplex roots have director components with equal absolute value. Therefore, the four fixed
points lie symmetrically placed in 45° planes with respect to the €., &, axes. Just as in the complex plane,

the constant ¢ may be any point in ¢ € C; in S'*2, the constant ¢ can be any point in the S™?2 scator set.

However, analytic solutions to the quadratic equation in S!*2 are only available at present for scalar (real)
o

C .

4.1. c= —%, connected set

Ife=—1 3 +08&, + 08, from (20b) the well known two real roots are obtained. These two fixed points

g0§1+o =3 :t ‘2[, are shown in red in the complex plane 2D rendering in figure 6a. As usual, one of them
2

is at che boundary (,%Sl+07+ = % + § € J(o — %), while the other is an interior p2oint Q%SH—O’_ = % - i

K(gop — %) \ J. This set is also shown in a 3D rendering in figure 6b. The K(gop — %) volume has been

restricted to the positive semi-space, thus exhibiting the z = 0 plane in the forefront since the viewpoint
is located on the &, axis at —2, i.e. ﬁobs =0—-2e, +0e,.

In addition to these two real roots, the hypercomplex roots from (20a) are

Ve, Y3,
Q%SH-Q\SLH = —1 + T €y. (23)

These invariant points, labeled &iml to c%imﬂl for the ++, ——, —4, +— sign combintations respectively, are

2
shown in red in figure 6¢; where a two dimensional rendering of the K (gop — %) volume intersection with
the &,, &, plane at s = —0.25 is depicted. These four hypercomplex roots seem to belong to the J set since

they visually lie on the boundary of the filled in set, J (cp — 5) = 0K ( — 7> This set is the higher

dimensional analogue of the Julia set in the complex plane. In figure 6d, a 3D rendering is shown viewed

2
from the s axis, the K(O — %) set is limited to the interval —0.25 > s > —10. A perspective where two of

the hypercomplex fixed points and one of the real fixed points are shown in red, is depicted in figure Ge.

2
There are then 6 forward invariant points in the K (gop — %) set in S'*2 scator space, in contrast with the
2 fixed points in S'*! scator space (equivalent to the complex plane).
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-1.60033 0.800167 0 0800167 160033

. _ 1 . . . . 2
(a) Jul{a set for ¢ = —5. Fixed points in the real axis (b) 3D rendering of the K(LZ — 1) seen from Dops = 0— 284+
shown in red. 0 &y, restricted to 0 < = < 10

2 2 9
(¢) 2D rendering of the K g% — % , (d) 3D rendering of the K(g% - %) seen from (e) K(& — %)7 restricted to
o . - . o -/
s = —0.25. The fixed hypercomplex Pobs = 2+ 0&z + 08y, restricted to —10 < z < - 1<01§ s < —0.25 and 0 <
points are shown in red. —0.25 < 10.
Fig. 6: Non divergent set in S'*? dynamic space for ¢ = _%_

5. Inverse orbits

From Lemma 4, the hypercomplex roots of the quadratic equation (21) have equal director coefficients
magnitudes, 2 = y? in (20a). Imposing this condition, the square roots (18a) are

o 1 /1
Ci,0:i§ H(( 52+x2+s)+xéx+yéy), (24a)

and (18Db)

0 1 /1

Cig ::i:§ ] (SgnmSgny (\/ 52 + 22 —8) —yéx—xéy> , (24b)
’ 5

where = and y have been retained in the director coefficients to account for their sign. Invert equation (14)

as usual to obtain the preimage of goom 11

o o o

Pm = gom{—l -G

where the roots are given by (24a) and (24b).
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2
5.1. Preimages of the J(¢ — 2) fized points

The hypercomplex fixed points for ¢= —% +0é, +0é, are given by (23). Upon subtraction of ¢, the roots

of
\/f V3,
49’

need to be evaluated to find the inverse orbits of the ﬁxed points. Consider one of the fixed points, say the

one in the positive x and y quadrant, cOpmH = ‘Opmvl -3 Ly \f S \[ey’
' 1 V3. V3.
o =5+ 6ty &= Qi — 3214‘?%4‘?%-

The square roots from (24a)-(24b) are then

o 3 \/gv \/gv o
‘Opinvl_g:Ci,OZi<4+4ex+4ey>’ Ci,lz

o
From these four roots, the outcome of (_ ; is again the fixed point copim,l,
> " \/‘ \/‘
V Pinvt — €= 1 4 ey

€; + — 1
o
The fixed point copmvl is forward invariant (by definition) and backward invariant under the action of (_ ;
However, let us consider the action of the other three roots. The inverse orbit iteration evaluated with

V3. o
N

= Pinvl-

o
the (4 ¢ root, seems to converge to a constant scalar component while the director components decrease
monotonically, as shown in Table 1. A few iterates (orange points) are depicted in Figure 7, where the

Q.,. 0 S X Y
Pinol -0.25 0.433013 | 0.433013
T
(c‘;m — 8) ’ 0.75 0.433013 | 0.433013
: 1.15062 0.193649 0.193649
1.28917 0.0753636 | 0.0753636
1.33819 0.0281712 | 0.0281712
1.35588 0.0103891 | 0.0103891
1.36232 0.00381307 | 0.00381307
1+ 3 ~1.36603. 0 0

Table 1: Inverse orbit of fixed point %nm evaluated with the C 40 =

root. All points seem to be in the J set (orange points in Figure 7).

1

2
intersection of the K (g% — 5) set with a plane having equal director components is pictured. The sequence
+ 0&, + 0é,, but interestingly, the value of the real fixed point in the

Julia set is Pgivo , = 5 + %2 ~ 1.36603 - -

seems to converge towards 1.36. ..

2
in the boundary of Figures 6a and 6b. In these two figures, the plane intersecting K (O

= 31/ 7 (\/32+132+8+$ex+yey)

. The point labeled 1.366 in figure 7 is the same point depicted

L) isz =0 (or
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2
Fig. 7: The K (0 - %) set observed at the intersection with the x = y plane (equal director components).
The axes plot are s (abscissas) versus % (€éz + &) (ordinates, shown with a dotted line in Fig. 6¢). Inverse

orbits of the fixed point @, = —1 1y ‘[ z+ ‘[ey are shown. All the points seem to be in the boundary

2
of the 0K (4:2 — %) = J set, none of them appears to be an interior point.

y = 0), whereas the intersecting plane is = y in Figure 7. All the points in the sequence seem to be in
2
the boundary of the K(o — %) set.

o
Backward iterations of Lopmvl with the ¢ ; root, give values with ever smaller scator coefficients in all three
components as can be seen in Table 2. While the scalar component decreases monotonically, the director
components alternate signs although their absolute value also decreases monotonically. These iterates are
shown with cyan dots in Figure 7, the value of one iterate to the next joined by yellow lines. It is interesting

to notice that the magnitude of the elements of the sequence seems to converge to 7, after 25 iterations
it is H(pH = 0.707107. While the origin is seen as an interior point of the K(go — 5) set in the y = 0 plane,
the indentations of this set in the x = y plane portray the origin as a boundary point. All the points in

the sequence again seem to be in J = 8K(g% — %)

o
Finally, backward iterations of S%mvl with (_ o = —%, /ﬁ ((\/ 2+ a2+ 5) +xze;+y éy) produce a period

two backward orbit alternating between the points

—7+\[ L Y3,y B V3 V3,

4 4 4 4 4 4
The g%p = —% — %éx — %éy point is shown in magenta in Figure 7. Since the J set is invariant under
the iteration, points in the J set must map to points within the J set. We have not proved that the fixed
hypercomplex points belong to the J set. This hypothesis is supported by the visual position of these points
in regions that seem to be on the boundary of the K set. All the points shown in Figure 7 again seem to
lie on the 9K = J boundary. Many other cases that are not reported also follow this pattern.

It is not mandatory to use the same root in the backward evaluation of orbits. We could proceed as in some
inverse Julia calculations in C, where one of the two roots is randomly chosen. The random choice of one

2
of the four hypercomplex roots in the present case, would fill in many other regions of the K (c,op — %) set
intersection with the = y plane (Figure 7). Notice that both, the forward or backward iterations maintain
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o
¢ 1 s T Y HS%H
Pinol -0.25 0.433013 | 0.433013 1
I
({éml - 8) 2 0.25 -0.433013 | -0.433013 | 1
: 0.0669873 0.25 0.25 1
0.0349738 | -0.166006 | -0.166006 | 0.823
0.0172025 | 0.113482 | 0.113482 | 0.766
0.00855398 | -0.0788981 | -0.0788981 | 0.736
0.00426558 | 0.0553182 | 0.0553182 | 0.722
0.00213004 | -0.0389501 | -0.0389501 | 0.714
0.00106434 | 0.0274834 | 0.0274834 | 0.711
Table 2: Inverse orbit of fixed point Pinvl

o
evaluated with the (4 ; = %, /ﬁ (Sgnx Sgny (\/ s2 + 22 — 3) —Yyéy—a éy> root.

1
to Voh 0.707107.

Magnitude converges

the equality between director coefficients, so that all the iterated points originated from the hypercomplex
roots must lie on this plane or its orthogonal version, z = —y.

Several interesting cases arise when applying different roots in the inverse orbit calculations. Let us under-

take just one of them as a curious example. Consider the point g%p = —% — %éx — %éy that is the partner

o
of the fixed point @;,,; in the period two backward orbit with the ¢ _ o root. If the point g%p is backward

o
iterated with the (_ ; root instead, the result is again goop. The point g%p is then backwards invariant under
9 - 7 . . . . . . o
(1! However it is not forward invariant, since the forward iteration maps it onto ;1.
Starting with arbitrary points in S'*2, it should be possible to recreate a set of points sufficiently close to
the 0K = J boundary. However, this procedure will not render all the nilpotent points.

6. Self similarity

Self similarity at arbitrarily small scales is a hallmark of fractal structures. In the Ix-set (S'*? higher
dimensional version of the M-set), we have seen that the main structure is repeated in similar smaller
structures. In dynamic space, self-similarity in the complex plane often reproduces the form of the boundary
or certain features at different scales rather than the whole object. Self similarity of the K set in S'*2 in a
region near to the scalar axis and one hyperimaginary plane is perhaps expected because such a plane is
close to the complex plane. For this reason, we have chosen to exhibit self similarity in a hyperimaginary-
hyperimaginary plane region in Figure 8. The constant has been set at minus one, ¢=—1+08&, + 0e,.
The part of the set shown in brown streaks is the surface of the volume between —10 < s < 0.6. The
white-yellow-orange cross like features correspond to the s = 0.6 plane, where the rendering of the set was
stopped. The cross like motives are repeated along the diagonals with different sizes. The brown fibers
intertwinings are also repeated again and again but are more difficult to discern. Two close ups shown in
Figure 8, keep on revealing more and more crossed motives at different scales.

7. The c=1

3, non connected set

Consider the non divergent set in dynamic space for the constant ¢ = % +0é&; + 0é,. The 3D rendering,
shown in figure 9a, reveals a grainy structure in contrast with the continuous rough surface of the previous
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(a) Viewpoint 0 = 2 4 0&5 + 0&y. (b) Detail of lower left branch. (c) Further magnification within this branch.

2
Fig. 8: Self similarity of the K (g% — 1) set. The €., &, plane is seen from the s axis with s < 0.6. The cross
shaped patterns on the s = 0.6 plane keep on repeating at different scales.

02 1

o

(a) J(go + %) set seen from (b) J(np + %) set seen from (c) J(gp + %) set (d) Juliaset for ¢ = 5.

o
1 1.

2 —4é; + 1&y 0 — 4é5 + 08y seen from 0 — 3&5 + Roots at 5 + 31.

0éy, limited to 0 <

x <0.03

2
Fig. 9: Visualization of the non divergent J set of the function <0,0 + ¢, with ¢ = %

examples. A Fatou dust like disconnected set in three dimensions is appreciated. Although there are some
more or less dense regions, it is possible to ’see through’ in any one of them. If ¢ = 2, recall that in C,

29
the Julia set is not connected since % is not in the M-set. The 3D rendering suggests that, in a similar
fashion, since 1 is not in the Ix-set, the J set in S'*2 is not connected. This remark will be discussed in

2
more detail in section 8. Let us consider the well known z = % + %z two fixed points in C to begin with;

they are depicted in red in figure 9d. In S'*2, the corresponding two copies of these roots in the s, &, and
s, &, planes are given by (20c), Q%Sglc-rl = % + %ém and (%Szl’-i—l = % + %éy. These last two roots are depicted
in figure 9c. 3D renderings limited to thin regions are particularly difficult to visualize for non connected
sets. In this example, if x is restricted to a 0.01 layer or less, there are hardly any points in the plot. As
the thickness is increased, more bound points are present but the figure is increasingly less similar to a 2D
rendering. A compromise has been chosen, where the layer has been restricted to 0 < z < 0.03, in order
to evince the similarities of the 3D and 2D mappings in figure 9¢ and the familiar 2D Julia set shown in
figure 9d.

In addition to the two copies of the complex like roots, there are four hypercomplex roots. From (20a),

Y. - ﬁéiﬁ
4 FT 4

Psi+2\si+1 = +

> w

é,. (25)
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2
These four fixed points are shown in red in the 2D plot in figure 10c. The 3D rendering of the K (g% + %)

02 1 02 1 . . 02 1
(a) J((,p + 5) set seen from (b) J(cp + 5) set restricted to (¢) 2D rendering of J((p + j),
4 + 0ez + 0&y 0.74 < s < 0.75, hyper-roots (25) de- s =0.75
picted with red dots.

o 2
Fig. 10: Visualization of the non divergent set in dynamic space of the function f = cop + % seen from the
s axis.

set, seen straight from the s axis, is shown in figure 10a. The same viewpoint (slightly magnified), but
restricted to a thin layer 0.74 < s < 0.75, gives the image shown in 10b. It is finally this last image that
resembles the 2D rendering 10c in the hyperimaginary - hyperimaginary plane.

8. Conjectures and conclusions

o
Differentiability is a necessary condition for a scator function g%({ ) = fo+ fz€é, + f,€, to be holomorphic.
According to a differential quotient criterion, necessary conditions for a function to be differentiable are
[Fernandez-Guasti, 2018|:

o
Theorem 2 [Fernandez-Guasti, 2018]. If a scator function c?a : U C S™2 — S22 of scator variable ¢ in

o
U C S'Y2, is differentiable at the point Cp = 20p + 2ap€z + 2yp€y, then the scalar part of the function fy
and the director parts of the function fu, fy, are real differentiable C' functions that satisfy the partial
differential equations

0z 0zy 0z (262)
Ofx dfo  Ofy dfo
ZJx _ _ZJY s —a 2
0z 0z, 0Oz Dz (26b)
0f0h __0f, 01, 0

02y 0z 02y 0z’

o
evaluated at the point (.

The partial derivatives involved in (26a) and (26b), resemble the Cauchy-Riemann conditions extended to
a real and two hyperimaginary dimensions. The square function does not satisfy conditions (26a), (26b)
and (26¢). Therefore, the square function is not holomorphic anywhere in the scator set. However, it is

o
scator differentiable for points ¢, with y =0, or x = 0 since then all crossed terms are equal to zero. This
result is expected because the s + x &, + 0é&, or the s + 0&, + y &, planes are identical to the complex
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plane where the square function is complex holomorphic. The lack of holomorphy according to a differential
quotient criterion of the square function prevents us from evaluating its derivatives and their subsequent
computation at the critical points. Thus, the classical fractal classification of points into super-attractive,
attractive, indifferent or repelling, depending on the value of its derivative, cannot be readily performed
for the quadratic mapping in the S'*2 scator realm. Furthermore, in S'*? it is not possible, according to
the differential quotient criterion, to define Fatou or Julia sets in terms of normal meromorphic families,
because the scator quadratic function is not meromorphic.

Nonetheless, an individual investigation of the forward orbits of several tens of points in S'*2 consistently

showed the following outcome after 25 iterations: i) For ¢ = —%, all sequences either approached QODS1+O =
- % —0.366--- (€ K set) or become very large > 10° (€ F set). ii) Points in the S!*2\ S!*! set

converge faster than points in S, To illustrate this latter assertion, the point 1+ 0.3¢&, + 0.2 é, after 25
iterates is equal to ~ —0.36651 — 4.17 x 1072 ¢é, — 8.74 x 1074 é,, while the point 1+ 0.3é, +0¢&, is equal

to = —0.36804 + 9.20 x 10_4 ¢, after the same number of iterates. For all the non divergent probed points,
f

the interior fixed pomt 1 _ V3 plays the role of an attractive point in S'™?2, just as it does in the complex

02
domain. The partial dlrectlonal derivatives of the quadratic function (p + ¢ depending on the direction
where from the limit is taken are

0 o2 2292 y2\ . 22\
% (¢ +8)_23(1—8 +2r (14 5 )&+ 2 (145 )&y,

0 o2 Y y*\ )
Gwéw((op +c)—23<1—8>+2x<1—82 e, +4y ey,

0 2 2 . x? .
e, (g?) +C)—28<1—52>—|-4l‘em+2y<1—32>ey.

On the scalar (real) line, x = y = 0, all three derivatives are equal to 2s. The magnitude of the derivative

for the fixed point Q%SH-O = % - @ is 0 < ‘1 - \/§’ < 1; therefore, it is an attractive point according to the

usual classification. Analogous results hold for points in the s, &, or s,é&,, for the roots SOOS;“ = % + %éx

and <OpS?1!+1 = % + %éy. Whether this criterion suffices to claim that these points are attractive in S'*2,
remains to be seen. For the hypecomplex roots, the partial derivatives are not equal, for example, if

s+ réy +yey = —fj: ‘[ = fey,
0 o
a<“" +8) =4+ 2V36, + 2v/38,, Ha ¢+c)‘:7.
and (an equivalent result holds for &ﬁéy)
0 02 o 0 02 o
-1 6, + V368, |—r —4.
oré, (SO * C) F V3e \/gey H oré, ((p + C)

Although it could be claimed that all three partial directional derivatives satisfy the criterion of repelling
points, due to the different values the function is not differentiable at these hypecomplex roots points.

From the numerical evaluation of many J sets, the following to conjectures seem to hold:

Conjecture: The Ix-set, provided that nilpotent points in parameter space are discarded, is the set of
parameters where the J set is connected.

Conjecture: The fundamental dichotomy is true in S'*2 scator algebra, the .J set is either connected or
there exist infinite separate sets.

Novel two and three dimensional renderings of the quadratic iteration in S'*2 dynamic scator space have
been studied and depicted. The sets reveal an intricate fractal boundary that is not easy to visualize due
to its complexity. The spikes present for many ¢ values, have been described in terms of nilpotent elements
at the m!" iteration. The J set for the origin has been shown to be equal to the unit isometric scator
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surface. The number of fixed points is increased due to the existence of four hypercomplex roots. Some

2 2
of the main features have been exemplified with two sets, K (g% — %) and K (g% + %) that seem to be

connected and disconnected respectively. Inverse orbits of the hypercomplex fixed points reveal a much
richer dynamic behaviour compared with their 2D counterpart. An infinite number of points in the z =y
plane can be generated with this procedure. It seems plausible that sets very close to J in S'*2 can also
be generated from inverse orbits of arbitrary points. Sets in dynamic space exhibit self similar boundary
shapes at different scales. In the particular values of ¢ that have been studied, the K interior attractive
fixed point in C also acts as the attractive fixed point for the forward orbits in S'*+2.
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