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The quadratic iteration is mapped within imaginary scator algebra in 1+2 dimensions in dynamic
space. There is a bound K set in the scator three dimensional space with a highly complex
boundary J = ∂K. Two and three dimensional renderings of the K set exhibit a rich fractal
boundary in all three directions. The Julia and filled in Julia sets are identically reproduced
at two perpendicular planes where only one non-vanishing hypercomplex director component is
present. The fixed points of K in S1+2 can be obtained from the roots of a quadratic equation.
In S1+2 there can be hypercomplex roots that give rise to four additional fixed points. The K
set of the origin is equal to the unit magnitude scator surface, in analogy to the unit circle Julia
set of the origin. The ix set, is the three dimensional equivalent of the M-set in three dimensions.
It is conjectured that the ix-set with some restrictions, is the set of parameters where the J set
is connected.

Keywords: Hyper-complex numbers; Imaginary scators; Quadratic iteration; Julia set; Discrete
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1. Introduction

The iterated quadratic mapping in the cuspheric scator set, produces a rich and complex structure in
parameter three dimensional space [Fernández-Guasti, 2016]. In contrast, other algebraic structures with
dimension higher than two, such as quaternions, produce a disappointing surface of revolution of the M-set
in three dimensions [Gomatam et al., 1995; Bedding & Briggs, 1995]. There have other efforts to extend
two dimensional fractal structures to three dimensions such as ternary algebra [Cheng & Tan, 2007] and
triplex algebra [White & Nylander, 2009; Rama & Mishra, 2011] and variations of them [Bonzini, 2010].
Visualizations of these sets, in particular quasi-Fuschian fractals [Araki, 2006] and the mandelbulb, have
received wide public exposure [Aron, 2009; Sanderson, 2009].

Methods originated in geographic visualization, architecture and digital animation are proving quite useful
to render these rather complicated structures [Blackledge, 2002].

∗permanent address of the author.
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In this communication, the three dimensional product and addition operations of imaginary scator algebra
are invoked to evaluate the quadratic mapping in dynamic space. Scator algebra is a finite dimensional
algebra over the reals with a multiplicative identity, thus fulfilling the hypercomplex algebra Kantor and
Solodovnikov criteria except for the distributivity of the product over addition [Kantor & Solodovnikov,
1989]. Scator elements can thus be viewed as hypercomplex numbers in 1+n dimensions if the distributivity
condition is relaxed. For n = 2, many of the singular properties of this algebra are already present. The
scator product is commutative and all elements except zero and infinity have an inverse. Nonetheless, scator
algebra is no longer a division algebra because it has zero products of non zero factors. The scator product
is associative in the multiplicative representation but not in the additive representation. The algebra
is endowed with a second order involution. This feature can be used to establish an order parameter.
These peculiarities do not prevent the scator number system from generating consistent iterated quadratic
mappings with a rich fractal structure in parameter space [Fernández-Guasti, 2016].

Scator algebra also produces remarkable iterated quadratic mappings in dynamic space. This is the subject
matter of the present communication: In section 2, the essentials of imaginary scator algebra in 1+2
dimensions are presented. The scator quadratic mapping is described in section 3. Three dimensional
analogues of the Julia and filled in Julia sets are presented in this section. 2D and 3D renderings illustrate
some of the main features of these sets. Square nilpotent points are discussed in subsection 3.2. The
fingerprint of the origin is shown in subsection 3.3. Fixed points in scator dynamic space are described in
section 4; hypercomplex roots produce extra fixed points with very interesting properties that coexist with
the real or imaginary fixed points. Inverse orbits are discussed in section 5, the existence of four possible
roots permits the evaluation of many points in the boundary set. Self similar objects within the K set
are set forth in section 6. An example is expounded in section 7, where the K set exhibits a Cantor dust
structure. Section 8 is dedicated some conjectures, given the difficulties encountered to establish formal
proofs. Conclusions are drawn in the last section.

2. Imaginary scators

In the additive representation, scator elements in 1+2 dimensions are written as the sum of three compo-
nents,

o
φ = s+ x ěx + y ěy, (1)

where s, x, y ∈ R and ěx, ěy /∈ R. The first component is the scalar component, while subsequent components
are named director components [Fernández-Guasti & Zald́ıvar, 2013]. Scator elements are decorated with
an oval placed overhead1. Addition of scators is defined by the sum of coefficients in each component
o
α+

o
β = (a0 + axěx + ayěy)+ (b0 + bxěx + byěy) = (a0 + b0)+ (ax + bx) , ěx+(ay + by) ěy. Scator numbers

satisfy commutative group properties under addition in R1+2.

Definition 2.1. The extended scator product
o
α

o
β of two scators,

o
α = a0+ax ěx+ay ěy and

o
β = b0+ bx ěx+

by ěy is,

o
α

o
β = a0b0

(
1− axbx

a0b0

)(
1− ayby

a0b0

)
+ a0b0

(
1− ayby

a0b0

)(
ax
a0

+
bx
b0

)
ěx

+ a0b0

(
1− axbx

a0b0

)(
ay
a0

+
by
b0

)
ěy. (2)

If there are coefficients equal to zero in the scator factors, the director coefficients limits should be taken
prior to the scalar coefficients limit.

1\overset{o} in LATEX lore
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The scator product is usually defined in the S1+2 set, where infinity is avoided. The extended scator product
allows for divergent products.

Example 2.1. If ax = bx = 0,

lim
ax→0,bx→0,

( o
α

o
β
)
= (a0b0 − ayby) + (ayb0 + a0by) ěy.

The usual complex product in C is recovered. The imaginary unit is ěy. An analogous result is obtained if
ay = by = 0, but the imaginary unit is then ěx.

Example 2.2. The limit a0 → 0 if axay ̸= 0, gives divergent coefficients in all three components,

lim
a0→0

( o
α

o
β
)
=∞+∞ ěx +∞ ěy.

There are then scator factors with finite coefficients whose product admits infinite coefficients.

Example 2.3. If a0 = 0 and ax = 0. The director coefficient limit should be taken first, thus

lim
ax→0

( o
α

o
β
)
= (a0b0 − ayby) + (a0b0 − ayby)

(
bx
b0

)
ěx + (ayb0 + a0by) ěy;

Thereafter, the scalar component limit is evaluated

lim
a0→0

(
lim
ax→0

( o
α

o
β
))

= −ayby − ayby
bx
b0
ěx + ayb0ěy. (3)

Example 2.4. If one factor has vanishing director coefficients
o
α = a0 + 0 ěx + 0 ěy = a0,

o
α

o
β = a0

o
β = a0b0 + a0bxěx + a0byěy.

The a0 component produces a scaling of all the scator
o
β components. Hence it is rightly named, the scalar

component of the scator.
o
1 = 1 + 0 ěx + 0 ěy = 1 is the multiplicative neutral.

Example 2.5. If axbx = ayby = a0b0, then
o
α

o
β = 0 + 0 ěx + 0 ěy, the scator product is zero. Thus, there

exist zero products of non zero factors.

2.1. Multiplicative representation of scators

The multiplicative representation of scators is analogous to the polar representation of complex numbers
in 1+1 dimensions,

o
φ = φ0e

φx ěxeφy ěy , (4)

where e is the complex exponential function. φ0 is the scator magnitude also named the multiplicative
scalar, φx is the angle of the scator projection between s and the ěx axes, φy is the angle of the projection
between s and the ěy axes. In the multiplicative representation, the product of two scators is evaluated by
performing the product of the magnitudes and the addition of the multiplicative director coefficients with
the same director unit [Fernández-Guasti, 2021a],

o
α

o
β =

(
α0e

αxěxeαy ěy
)(

β0e
βxěxeβy ěy

)
= α0β0e

(αx+βx)ěxe(αy+βy)ěy . (5)

The multiplicative scator components having the same director unit ěx or ěy, satisfy the addition theorem
for exponents. However, the addition theorem for exponents does not hold for scators with different director
units, i.e. eφx ěxeφy ěy ̸= eφx ěx+φy ěy .

The additive (1) and multiplicative (4) representations of scators are related by

o
φ = φ0e

φx ěxeφy ěy = φ0 cosφx cosφy + φ0 cosφy sinφx ěx + φ0 cosφx sinφy ěy = s+ x ěx + y ěy. (6)



October 16, 2022 22:33 frac-imsca-dyn3

4 M. Fernández-Guasti

From this expression, it follows that if s = φ0 cosφx cosφy = 0, then
o
φ = 0 or

o
φ has only one non vanishing

director component. Furthermore, if the two director components do not vanish, φ0 cosφy sinφx ̸= 0 and
φ0 cosφx sinφy ̸= 0, then the scalar component is necessarily also different from zero.

Definition 2.2. The scator set S1+2 ⊂ R3, is the subspace where the scalar component is not zero if the
two director components are different from zero,

S1+2 =
{

o
φ = s+ x ěx + y ěy, s, x, y ∈ R : s ̸= 0 if x, y ̸= 0

}
. (7)

The S1+2 set avoids divergent products (like the one in Example 2.2). This set was labeled with the letter
E in some of the earlier manuscripts.

Remark 2.1. The scator additive and multiplicative representations are equivalent in the S1+2 scator set,
except for the kernel of the transformation.

2.2. Magnitude

The conjugate of the scator is given by the negative of the director components, leaving the scalar com-

ponent unchanged in either representation. In the additive representation,
o
φ
∗
= s − xěx − yěy is the

conjugate of
o
φ = s + xěx + yěy. In the multiplicative representation,

o
φ
∗
= φ0 e

−φx ěxe−φy ěy is the conju-

gate of
o
φ = φ0e

φx ěxeφy ěy . The magnitude of a scator is equal to the positive square root of the scator times

its conjugate
∥∥ o
φ
∥∥ =

√
o
φ

o
φ
∗
. In the multiplicative representation from (5), is

∥∥ o
φ
∥∥ = φ0, the multiplicative

scalar is thus the scator magnitude. In the additive representation, the square magnitude is∥∥ o
φ
∥∥2 = o

φ
o
φ
∗
= s2

(
1 +

x2

s2

)(
1 +

y2

s2

)
. (8)

The multiplicative inverse, from (8) is
o
φ
−1

=
o
φ
∗∥∥ o
φ
∥∥−2

. In multiplicative variables
o
φ
−1

=
o
φ
∗
/φ2

0 and in
terms of additive variables, the inverse is

o
φ
−1

= s−2

(
1 +

x2

s2

)−1(
1 +

y2

s2

)−1
o
φ
∗
. (9)

A scator is invertible except if all additive components are zero or if s = 0 when xy ̸= 0.

Definition 2.3. The extended scator set S̄1+2 = R3 ∪ {∞}, allows for all three scator coefficients to be in
the reals plus infinity

S̄1+2 =
{

o
φ = s+ x ěx + y ěy, s, x, y ∈ R ∪ {∞}

}
, (10)

The points at infinity are attained if any of the scator components becomes infinite, i.e. s → ∞ and/or
x → ∞ and/or y → ∞. The magnitude of these points is infinite. Although the set of points with zero
scalar component s = 0 and two nonvanishing director components xy ̸= 0 have finite coefficients, their
magnitude is also infinite. Elements in S̄1+2 \ S1+2 have divergent magnitude. This state of affairs has
led to the concept of divergent vicinity whenever the zero scator is involved [Fernández-Guasti, 2016].
The element 0 + 0 ěx + 0 ěy has a divergent vicinity since the magnitude of 0 + δx ěx + δy ěy is infinite if
δx, δy ̸= 0. The scator magnitude does not diverge in S1+2.

Remark 2.2. There exists a scator multiplicative representation for elements in the S1+2 scator set but not
in S̄1+2 \ S1+2.

Let us mention two propositions that will be useful in the coming sections:
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Lemma 1 [Fernandez-Guasti, 2016]. The only non trivial square nilpotent elements
o
φ
2
= 0+0 ěx+0 ěy in

1+2 dimensional imaginary scator algebra are elements whose three components have equal absolute value,
o
φ = ±g ± g ěx ± g ěy.

Corollary 2.1 [Fernandez-Guasti, 2016]. The square of an invertible element is invertible if it is not square
nilpotent.

3. Iterated quadratic mapping

Consider a function
o
f c : S̄1+2 → S̄1+2 to be a scator function of scator variable.

Definition 3.1. The non divergent set K
(o
f c

)
in dynamic space for imaginary scators in 1+2 dimensions

is given by

K
(o
f c

)
=

{
o
φ ∈ S̄1+2 : ∀m ∈ N,

∥∥o
f
m

c

( o
φ
)∥∥↛∞

}
, (11)

where
o
f
m

c denotes the m-fold composition
o
f
m

c =
o
f c

(o
f c

(o
f c · · ·

))
of the function

o
f c ∈ S1+2.

K
(o
f c

)
is a three dimensional generalization of the filled in Julia set. In this generalization, the Julia set is

again defined as the boundary of the filled in Julia set J
(o
f c

)
= ∂K

(o
f c

)
. This boundary is now embedded

in an S̄1+2 three dimensional space. The filled in K
(o
f c

)
set has been defined in terms of a non divergent

condition rather than a bounded one. This will be relevant as we shall see further down because nilpotent
points can be very large but are nonetheless in the K set.

The square of a scator
o
φ = s + xěx + yěy is obtained from the product of two equal scators,

o
φ
2
=

(s+ xěx + yěy)
2 = s⋄ + x⋄ěx + y⋄ěy. From Eq. (2)

o
φ
2
= s2

(
1− x2

s2

)(
1− y2

s2

)
+ 2sx

(
1− y2

s2

)
ěx + 2sy

(
1− x2

s2

)
ěy. (12)

The square function mapping q : S1+n → S1+n,
o
φ 7→ o

φ
2
satisfies q

(
λ
o
φ
)
= λ2q

( o
φ
)
, λ ∈ R. In the multiplica-

tive representation, the square of a scator is

o
φ
2
= φ2

0 e
2φxěxe2φy ěy . (13)

The iteration procedure in dynamic space is obtained by fixing an initial constant
o
c = sc + xc ěx + yc ěy

and evaluating, for each point in the scator space
o
φ = s + x ěx + y ěy ∈ S1+2, the quadratic recurrence

relationship

o
φm+1 =

o
φ
2

m +
o
c. (14)

Bound points obtained for an arbitrary number of iterations comprise the filled in Julia set in S̄1+2. Consider

the family of maps
o
f c :

o
φ 7→ o

φ
2
+

o
c from S̄1+2 to S̄1+2, where the variable

o
φ and the constant

o
c are scator

elements. In terms of the additive coefficients, for each point
o
φ1 = s1+x1 ěx+y1 ěy and

o
c = cs+cx ěx+cy ěy,

the quadratic iteration recurrence relationship for the scalar component is

sm+1 = s2m

(
1− x2m

s2m

)(
1− y2m

s2m

)
+ cs (15a)

and for the director components,

xm+1 = 2smxm

(
1− y2m

s2m

)
+ cx, (15b)
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ym+1 = 2smym

(
1− x2m

s2m

)
+ cy. (15c)

The iteration (15a)-(15c) has been implemented in the Mandelbulber (version 2.20-dev) three dimensional
fractal visualization program. Very intricate surfaces are obtained that are difficult to handle by ray tracing
programs. The processing power required to generate 3D fractals is greatly increased compared with 2D
renderings. It is necessary to extend the two dimensional image grid to three dimensional space. An image
with 103 pixels resolution in each axis, requires 109 voxels (1000 million points!). Thus, the iteration of
a much larger set of points is required to begin with. Thereafter, ray tracing is necessary to establish
the observer point of view, with the concomitant occlusion of interior points or points that lie behind a
particular surface from the observer point of view. The capability of using parallel GPU processing using
OpenCL has greatly enhanced the rendering velocity.

Two dimensional renderings of the 3D K
(o
f c

)
set can also be made at a particular 2D plane with standard

plots. For example, the set in the (s, ěy) plane at a constant x0ěx value is obtained by evaluating the (15a)-
(15c) triad for s+ x0ěx + yěy, for all s, y values. Inclined planes can also be rendered if a condition of the
form x = my, where m is constant, is imposed. Notice that in these cases, the plane under consideration
has no breath, i.e. it is fixed to a single value. In contrast, 3D renderings require voxels, that is 3D tiny
boxes; in this case, a plane can thus be obtained only within the thickness of the minimum voxel size.

3.1. Non divergent set in dynamic space for
o
φc = −0.5 + 0 ěx + 0.5 ěy

Consider the quadratic iteration non divergent set in dynamic S1+2 scator space K
( o
φ
2
+

o
c
)
for the hyper-

complex point
o
c = −0.5+0 ěx+0.5 ěy. The rendered set, observed from

o
v = 3−8 ěx+1 ěy, is shown in figure

1. This set is equivalent to the filled in Julia set in the complex plane K
(
z2 + zc

)
∈ C, zc = −0.5+0.5i but

Fig. 1: Non divergent set in 3D dynamic scator space, K
( o
φ
2
+

o
φc

)
∈ S1+2 of the

o
c = −0.5 + 0 ěx + 0.5 ěy

hypercomplex point, seen from
o
v = 3−8 ěx+1 ěy. Image generated with ’Mandelbulber’ rendering program.

extended to three dimensional space. The fractal nature of the surface makes it very difficult to produce
an accurate ray tracing reflection due to the boundary roughness. Besides the central bundle, there are
eight straight long filaments extending from the center up to large coordinate values. This feature can be
explained as follows.
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3.2. Square nilpotent elements

Square nilpotent
o
φnil points are equal to the constant

o
c upon the first iteration,

o
φ2 =

o
φ
2

nil +
o
c =

o
c.

Thereafter, the iterations follow the orbit of the point
o
c in parameter space, i.e. { oφnil,

o
c,

o
c
2
+

o
c,
(o
c
2
+ c
)2

+
o
c, ...}. This sequence does not diverge if the point belongs to the Ix-set. The orbit of all nilpotent points

after the first iteration is the same and is the sequence of
o
c in parameter space. This set, coined here as

the Ix-set2, has been described in an earlier communication [Fernández-Guasti, 2016]. The Ix-set is the
quadratic iteration bound set in parameter S1+2 scator space. The Mandelbrot set is a subset of the Ix-set,

M ⊂ Ix. If the constant
o
c is in the Ix-set, it is a bound point and therefore nilpotent points will be in the

K
( o
φ
2
+

o
c
)
set. From Lemma 1, nilpotent elements have equal absolute value of the scalar and director

components. The four
o
φ = ±g ± gěx ± gěy straight lines are tilted ±45° with respect to the s, ěx and

s, ěy projections. The azimuthal angle with respect to any of the axes is arctan
(
±
√
2
)
≈ ±54.7°. The four

spikes present in the K
( o
φ
2
+

o
c
)
sets for

o
c ∈ Ix-set, are due to this nilpotent feature. These spikes extend

to arbitrarily large values of g.

(a) Rendering for values within ±10 in all three variables. (b) Rendering restricted to the 0 ≤ x ≤ 10 region in the ěx
axis.

Fig. 2: K
( o
φ
2
+

o
c
)
closer detail of the

o
c = −0.5 + 0 ěx + 0.5 ěy hypercomplex point, seen from

o
v = 0.75 −

2 ěx + 1 ěy.

A close up of the central region is shown in figure 2a. The surface exhibits an intricate pattern of streaks
in different directions. There is, so far, hardly any resemblance of this figure with a filled in Julia set. It is
possible to limit the rendering to a region in the mandelbulber program. In figure 2b, the set is limited to
0 ≤ x ≤ 10 region in the ěx direction and left in the default ±10 limits in the scalar and ěy axes. The set
inside colouring, established by the programmers, is determined by the value at the end of the orbit trap
iterations. The surface cut at x = 0 begins to look a bit more familiar. If the observation point is located
on the ěx axis, figure 3a is obtained and if the rendering is further restricted to a region very close to the
x = 0 plane, figure 3b is obtained. In a 3D rendering, the voxels have finite size in all three directions, in
fact, they are usually cubic structures. This means that the x = 0 plane cannot be chosen with zero breath.
It has to encompass a finite albeit small depth. Some kinks, particularly evident close to the s = 0 line, are
a consequence of this finite depth. For comparison, a filled in Julia set K (zc) for zc = −0.5 + 0.5i in the
complex plane is shown in figure 3c. The two sets are remarkably similar, the irrelevant inline colouring
making for most of the difference. The minor differences, mainly observed close to s = 0, but present in the

2Ix is pronounced ish, like in lavish.
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(a) K
(o
φ
2
+

o
c
)
seen from

o
v = 0 − 2 ěx + 0 ěy restricted to

0 ≤ x ≤ 10.
(b) K

(o
φ
2
+

o
c
)
seen from

o
v = 0 − 2 ěx + 0 ěy but restricted

to the minimum voxel size in x, −0.003 ≤ x ≤ 0.003.

(c) Familiar filled in Julia set of the zc = −0.5+0.5i point in
the complex plane obtained from a standard 2D plot.

(d) K
(o
φ
2
+

o
c
)
evaluated at the plane

o
φ = s+0.003ěx + yěy,

with a standard 2D plot.

Fig. 3: K
( o
φ
2
+

o
c
)
detail of the

o
c = −0.5+ 0 ěx +0.5 ěy hypercomplex point. Comparison of a thin 3D slice

seen from the ěx direction, the Julia set in the complex plane and a 2D rendering with an offset of 0.003
in the ěx hypercomplex plane.

whole frontier when looked in detail, can be attributed to the finite depth of the 3D rendering. To confirm
this assertion, the voxel size is estimated to be 6.1 × 10−3 per side. The 3D program is then evaluating

the x = 0 plane with ±3.05× 10−3 resolution. In figure 3d, a 2D rendering at the
o
φ = x+ 0.003 ěx + y ěy

hypercomplex plane is depicted. This set exhibits the kinks absent in the Julia set, but present in the 3D
rendering.

3.3. The fingerprint of the origin.

Consider the constant point to be the origin,
o
c = 0 + 0 ěx + 0 ěy. The quadratic iteration is then

o
φm+1 =

o
φ
2

m.

From the multiplicative to additive representations (6) and the square of a scator in the multiplicative
representation (13), the square of a scator is

o
φ
2
= φ2

0 e
2φx ěxe2φy ěy = φ2

0 [cos (2φx) cos (2φy) + cos (2φy) sin (2φx) ěx + cos (2φx) sin (2φy) ěy] .

Its magnitude is
∥∥ o
φ
2∥∥ = φ2

0. The doubling of angles produces a scator rotation (not an Euclidean rotation)

in the s, ěx and s, ěy planes that does not alter the scator magnitude. A repeated iteration
o
φm+1 =

o
φ
2

m will

then make the magnitude increase indefinitely for
∥∥ o
φ
∥∥ > 1 and will decrease monotonically for

∥∥ o
φ
∥∥ < 1.
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The magnitude will be invariant for unit magnitude
∥∥ o
φ
∥∥ = 1. The set for the origin in dynamic space

should then be the isometric surface. This is indeed the case, figure 4a shows the 3D rendering of the

J
( o
φ
2)

set for
o
c = 0 + 0 ěx + 0 ěy. For comparison, the cusphere surface, drawn for unit magnitude from

Eq. (6), is shown in figure 4b. The J
( o
φ
2)

set is compared with the isometric surface rather than K
( o
φ
2)

because it is the boundary J = ∂K that is actually equal to the cusphere surface.

(a) J
(o
φ
2)

seen from
o
v = 1.4− 2.5 ěx + 0.7 ěy.

(b) Cusphere drawn from parametric plot of Eq.
(6) with φ0 = 1

Fig. 4: Bound set for the origin
o
c = 0 + 0 ěx + 0 ěy and the cusphere rendered from the unit magnitude

condition,
∥∥ o
φ
∥∥ = 1 .

4. Fixed points

Lemma 2. The fixed points in S1+2 scator space for the quadratic iteration
o
φm+1 =

o
φ
2

m +
o
c, provided that

the constant
o
c = c+ 0 ěx + 0 ěy is a scalar are:

If |4c| > 1, (four hypercomplex roots)

o
φS1+2\S1+1 =

(
c+

1

4

)
± 1

4

√
16c2 − 1ěx ±

1

4

√
16c2 − 1ěy; (16a)

If 4c ≤ 1, (real roots),

o
φS1+0 =

1

2
± 1

2

√
1− 4c; (16b)

If 4c > 1, (two copies of the complex like roots),

o
φS1+1

x
=

1

2
± 1

2

√
4c− 1ěx,

o
φS1+1

y
=

1

2
± 1

2

√
4c− 1ěy. (16c)

Proof. The point
o
φ is fixed if

o
φm+1 =

o
φm in the quadratic iteration. The polynomial to be solved is then

o
φ
2
− o
φ+ c = 0, (17)

where
o
φ ∈ S1+2. The scator solutions to this polynomial are given by Theorem 1 in [Fernández-Guasti,

2021b]:
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Theorem 1 [Fernandez-Guasti, 2021]. The second order polynomial a
o
φ
2
+ b

o
φ + c = 0, where

o
φ ∈ S1+2 is an elliptic scator and a, b, c ̸= 0 are real coefficients, has the following roots:
If |4ac| > b2,

o
φS1+2\S1+1 = −4ac+ b2

4ab
±

√
(4ac)2 − (b2)2

16a2b2
ěx ±

√
(4ac)2 − (b2)2

16a2b2
ěy; (18a)

If 4ac ≤ b2,

o
φS1+0 = − b

2a
±
√
b2 − 4ac

2a
; (18b)

If 4ac > b2,

o
φS1+1

1
= − b

2a
±
√
−b2 + 4ac

2a
ěx,

o
φS1+1

2
= − b

2a
±
√
−b2 + 4ac

2a
ěy. (18c)

For the fixed points quadratic polynomial (17), a = 1, b = −1. From (18a)-(18c), the solutions (16a)-(16c)
are obtained.

■

In contrast with the quadratic polynomial in the complex field, where the roots are either both real or
both imaginary, the hypercomplex solutions can coexist with the real or complex like solutions in S1+2. We
refer to hypercomplex roots to those solutions where the scalar and both director components are different
from zero.

• If −1
4 ≤ c ≤ 1

4 , only the usual two, possibly degenerate, real solutions exist. Outside this region, there are
additionally four hypercomplex roots.
• For c < −1

4 , there are six fixed points. In addition to the two real points, there are four fixed points due

to the hypercomplex roots. These point lie in the ěx, ěy plane in the negative s semispace at s = c+ 1
4 .

• For c > 1
4 , there are eight fixed points. Four fixed points, two in the s, ěx plane and two in the s, ěy plane.

These points correspond to the usual solutions in the complex plane, but there are now two hypercomplex
planes sharing the scalar axis. There is no precedence of the two hyperimaginary axes, the two hyper-
imaginary units ěx or ěy become identical to the i imaginary unit if only one (hyperimaginary) director
component is present. In addition, there are four hypercomplex roots in the positive s semispace at the
s = c + 1

4 plane. There exist hypercomplex roots (|4ac| > b2) whenever there exist complex like roots
(4ac > b2).

The hypercomplex roots have director components with equal absolute value. Therefore, the four fixed
points lie symmetrically placed in 45° planes with respect to the ěx, ěy axes. Just as in the complex plane,

the constant c may be any point in c ∈ C; in S1+2, the constant
o
c can be any point in the S1+2 scator set.

However, analytic solutions to the quadratic equation in S1+2 are only available at present for scalar (real)
o
c .

4.1. c = −1
2
, connected set

If
o
c = −1

2 + 0 ěx + 0 ěy, from (16b) the well known two real roots are obtained. These two fixed points
o
φS1+0 = 1

2 ±
√
3
2 , are shown in red in the complex plane 2D rendering in figure 5a. As usual, one of them

is at the boundary
o
φS1+0,+ = 1

2 +
√
3
2 ∈ J

( o
φ
2
− 1

2

)
, while the other is an interior point

o
φS1+0,− = 1

2 −
√
3
2 ∈

K
( o
φ
2
− 1

2

)
\ J . This set is also shown in a 3D rendering in figure 5b. The K

( o
φ
2
− 1

2

)
volume has been

restricted to the positive semi-space, thus exhibiting the x = 0 plane in the forefront since the viewpoint

is located on the ěx axis at −2, i.e. o
vobs = 0− 2 ěx + 0 ěy.
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(a) Julia set for c = − 1
2 . Fixed points in the real axis

shown in red.
(b) 3D rendering of the K

(o
φ
2
− 1

2

)
seen from

o
νobs = 0−2 ěx+

0 ěy, restricted to 0 ≤ x ≤ 10

(c) 2D rendering of the K

(
o
φ
2
− 1

2

)
,

s = −0.25. The fixed points aris-
ing from hypercomplex roots shown
in red.

(d) 3D rendering of the K
(o
φ
2
− 1

2

)
seen from

o
φobs = 2 + 0 ěx + 0 ěy, restricted to −10 ≤ x ≤
−0.25

(e) K
(o
φ
2
− 1

2

)
, restricted to

−10 ≤ s ≤ −0.25 and 0 ≤
x ≤ 10.

Fig. 5: Non divergent set in S1+2 dynamic space for c = −1
2 .

In addition to these two real roots, the hypercomplex roots from (16a) are

o
φS1+2\S1+1 = −1

4
±
√
3

4
ěx ±

√
3

4
ěy. (19)

These roots are depicted in red in figure 5c, where a two dimensional rendering of the K
( o
φ
2
− 1

2

)
volume

intersection with the ěx, ěy plane at s = −0.25 is shown depicted. These four hypercomplex roots, shown in

red, belong to the J set since they lie on the boundary of the filled in set, J
(

o
φ
2
− 1

2

)
= ∂K

(
o
φ
2
− 1

2

)
. This

set is the higher dimensional analogue of the Julia set in the complex plane. In figure 5d, a 3D rendering is

shown viewed from the s axis, the K
( o
φ
2
− 1

2

)
set is limited to the interval −0.25 ≥ s ≥ −10. A perspective

where two of the hypercomplex fixed points and one of the real fixed points are shown in red, is depicted

in figure 5e. There are then 6 fixed points in K
( o
φ
2
− 1

2

)
in S1+2 scator space, in contrast with the 2 fixed

points in S1+1 scator space (equivalent to the complex plane).
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5. Inverse orbits

The square roots of a scator
o
φ ∈ S1+2 in the additive representation with multiplicative angle variables are

given by [Fernández-Guasti, 2022]

o
φ

1
2 =

o
ζ±,0 = ±φ

1
2
0

(
cos

φx

2
cos

φy

2
+ cos

φy

2
sin

φx

2
ěx + cos

φx

2
sin

φy

2
ěy

)
, (20a)

and due to the π-pair symmetry,

o
φ

1
2 =

o
ζ±,1 = ±φ

1
2
0

(
sin

φx

2
sin

φy

2
− sin

φy

2
cos

φx

2
ěx − sin

φx

2
cos

φy

2
ěy

)
. (20b)

In terms of the scator additive variables

√
o
φ =

√
s+ x ěx + y ěy, the square roots are

√
o
φ =

o
ζ±,0 = ±

1

2

√
1

|s|

[√(√
s2 + x2 + s

)(√
s2 + y2 + s

)
+ Sgnx

√(√
s2 + x2 − s

)(√
s2 + y2 + s

)
ěx

+Sgny

√(√
s2 + x2 + s

)(√
s2 + y2 − s

)
ěy

]
, (21a)

and from the π-pair symmetry,

√
o
φ =

o
ζ±,1 = ±

1

2

√
1

|s|

[
Sgnx Sgny

√(√
s2 + x2 − s

)(√
s2 + y2 − s

)
− Sgny

√(√
s2 + x2 + s

)(√
s2 + y2 − s

)
ěx

−Sgnx
√(√

s2 + x2 − s
)(√

s2 + y2 + s
)
ěy

]
. (21b)

From Lemma 2, the hypercomplex roots of the quadratic equation (17) have equal director coefficients
magnitudes, x2 = y2 in (16a).Imposing this condition, the square roots (21a) are

o
ζ±,0 = ±

1

2

√
1

|s|

((√
s2 + x2 + s

)
+ x ěx + y ěy

)
, (22a)

and (21b)

o
ζ±,1 = ±

1

2

√
1

|s|

(
Sgnx Sgny

(√
s2 + x2 − s

)
− y ěx − x ěy

)
, (22b)

where x and y have been retained in the director coefficients to account for their sign.

Invert equation (14) as usual to obtain the preimage of
o
φm+1,

o
φm =

√
o
φm+1 −

o
c,

where the roots are given by (22a) and (22b).
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5.1. Preimages of the J
( o
φ

2
− 1

2

)
fixed points

The hypercomplex fixed points for
o
c = −1

2 +0 ěx+0 ěy are given by (19). Upon subtraction of
o
c, the roots

of

o
φm =

√
1

4
±
√
3

4
ěx ±

√
3

4
ěy,

need to be evaluated to find the inverse orbits of the fixed points. Consider one of the fixed points, say the

one in the positive x and y quadrant,
o
φm+1 =

o
φinv1 = −1

4 +
√
3
4 ěx +

√
3
4 ěy,

o
φ
′
= s′ + x′ ěx + y′ ěy =

o
φinv1 −

o
c =

1

4
+

√
3

4
ěx +

√
3

4
ěy.

The square roots from (22a)-(22b) are then√
o
φinv1 −

o
c =

o
ζ±,0 = ±

(
3

4
+

√
3

4
ěx +

√
3

4
ěy

)
,

and √
o
φinv1 −

o
c =

o
ζ±,1 = ±

(
1

4
−
√
3

4
ěx −

√
3

4
ěy

)
.

From these four roots, the outcome of
o
ζ−,1 is again the fixed point

o
φinv1,√

o
φinv1 −

o
c =

(
1

4
+

√
3

4
ěx +

√
3

4
ěy

) 1
2

=
o
ζ−,1 = −

1

4
+

√
3

4
ěx +

√
3

4
ěy =

o
φinv1.

The fixed point
o
φinv1 is forward invariant (by definition) and backward invariant under the action of

o
ζ−,1.

The inverse orbit iteration evaluated with the
o
ζ+,0 root, seems to converge to a constant scalar component

while the director components decrease monotonically, as shown in Table 1. A few iterates (red points)

o
ζ+,0 s x y
o
φinv1 -0.25 0.433013 0.433013(

o
φinv −

o
c
) 1

2
0.75 0.433013 0.433013

... 1.15062 0.193649 0.193649
1.28917 0.0753636 0.0753636
1.33819 0.0281712 0.0281712
1.35588 0.0103891 0.0103891
1.36232 0.00381307 0.00381307

...
...

...
1
2 +

√
3
2 ≈ 1.36603 . . . 0 0

Table 1: Inverse orbit of fixed point
o
φinv1 evaluated with the

o
ζ+,0 = 1

2

√
1
|s|

(√
s2 + x2 + s+ x ěx + y ěy

)
root. All points are in the J set.

are depicted in Figure 6, where the intersection of the K
( o
φ
2
− 1

2

)
set with a plane having equal director

components is pictured. The sequence seems to converge towards 1.36 . . . + 0ěx + 0ěy, but interestingly,
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the value of the real fixed point in the Julia set is
o
φS1+0,+ = 1

2 +
√
3
2 ≈ 1.36603 · · · . The point labeled 1.366

in figure 6 is the same point depicted in the boundary of Figures 5a and 5b. In these two figures, the plane

intersecting K
( o
φ
2
− 1

2

)
is x = 0 (or y = 0), whereas the intersecting plane is x = y in Figure 6.

Fig. 6: The K
( o
φ
2
− 1

2

)
set observed at the intersection with the x = y plane (equal director components).

The axes plot are s (abscissas) versus 1√
2
(ěx + ěy) (ordinates). Inverse orbits of the fixed point

o
φinv1 =

−1
4 +

√
3
4 ěx +

√
3
4 ěy are shown.

Backward iterations of
o
φinv1 with the

o
ζ+,1 root, give values with ever smaller scator coefficients in all three

components as can be seen in Table 2. While the scalar component decreases monotonically, the director
components alternate signs although their absolute value also decreases monotonically. These iterates are
shown with cyan dots in Figure 6, the value of one iterate to the next joined by yellow lines. While the

origin is seen as an interior point of the K
( o
φ
2
− 1

2

)
set in the y = 0 plane, the indentations of this set in

the x = y plane portray the origin as a boundary point.

Finally, backward iterations of
o
φinv1 with

o
ζ−,0 = −1

2

√
1
|s|

((√
s2 + x2 + s

)
+ x ěx + y ěy

)
produce a period

two backward orbit alternating between the points

−1

4
+

√
3

4
ěx +

√
3

4
ěy ←→ −

3

4
−
√
3

4
ěx −

√
3

4
ěy.

The
o
φp = −3

4 −
√
3
4 ěx −

√
3
4 ěy point is shown in magenta in Figure 6.

Since the J set is invariant under the iteration, points in the J set must map to points within the J set.
We have not proved that the fixed hypercomplex points belong to the J set, although the fact that they
are forward invariant but are neither zero nor infinity, suggest that they are in J . This conjecture is further
supported by the visual position of these points in regions that seem to be on the boundary of the K set.
All the points shown in Figure 6 again seem to lie on the ∂K = J boundary. Many other cases that are
not reported also follow this pattern.

It is not mandatory to use the same root in the backward evaluation of orbits. We could proceed as in
inverse Julia calculations in C, where one of the two roots is randomly chosen. The random choice of one

of the four hypercomplex roots in the present case, would fill in many other regions of the K
( o
φ
2
− 1

2

)
set
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o
ζ+,1 s x y
o
φinv1 -0.25 0.433013 0.433013(

o
φinv1 −

o
c
) 1

2
0.25 -0.433013 -0.433013

... 0.0669873 0.25 0.25
0.0349738 -0.166006 -0.166006
0.0172025 0.113482 0.113482
0.00855398 -0.0788981 -0.0788981
0.00426558 0.0553182 0.0553182
0.00213004 -0.0389501 -0.0389501
0.00106434 0.0274834 0.0274834

...
...

...

Table 2: Inverse orbit of fixed point
o
φinv1

evaluated with the
o
ζ+,1 = 1

2

√
1
|s|

(
Sgnx Sgny

(√
s2 + x2 − s

)
− y ěx − x ěy

)
root. All points are in the

J set, not interior points of the filled in Julia set, /∈ K \ J .

intersection with the x = y plane (Figure 6). Notice that both, the forward or backward iterations maintain
the equality between director coefficients, so all the iterated points coming from the hypercomplex roots
must lie on this plane or its orthogonal version, x = −y.
Several interesting cases arise when applying different roots in the inverse orbit calculations. Let us under-

take just one of them as a curious example. Consider the point
o
φp = −3

4 −
√
3
4 ěx−

√
3
4 ěy that is the partner

of the fixed point
o
φinv1 in the period two backward orbit with the

o
ζ−,0 root. If the point

o
φp is backward

iterated with the
o
ζ−,1 root instead, the result is again

o
φp. The point

o
φp is then backwards invariant under

o
ζ−,1! However it is not forward invariant, since the forward iteration maps it onto

o
φinv1.

Zero and infinity are attractors. Cannot prove

Fig. 7: Detail of the vicinity of 1.366 Increasing magnification of region around the real fixed point 1
2+

√
3
2 ≈

1.366 observed at the plane with equal director components.

6. Self similarity

Self similarity at arbitrarily small scales is a hallmark of fractal structures. In the Ix-set (S1+2 higher
dimensional version of the M-set), we have seen that the main structure is repeated in very similar smaller
structures. In dynamic space self-similarity in the complex plane often reproduces the form of the boundary
or certain features at different scales rather than the whole object. Self similarity of the K set in S1+2 in a
region near to the scalar axis and one hyperimaginary plane is perhaps expected because such a plane is
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close to the complex plane. For this reason, we have chosen to exhibit self similarity in a hyperimaginary-

hyperimaginary plane region in Figure 8. The constant
o
c = −1 + 0ěx + 0ěy has been set at −1. The part

of the set shown in brown streaks is the surface of the volume between −10 ≤ s < 0.6. The white-yellow-
orange cross like features correspond to constant s = 0.6, where the rendering of the set was stopped. The

(a) Viewpoint
o
v = 2 + 0ěx + 0ěy. (b) Detail of lower left branch. (c) Further detail within branch.

Fig. 8: Self similarity of the K
( o
φ
2
− 1
)
set. ěx, ěy is seen from the s axis with s ≤ 0.6. The cross shaped

patterns on the s = 0.6 plane keep on repeating at different scales.

cross like motives are repeated along the diagonals with different sizes. The brown fibers intertwining is
also repeated again and again but are more difficult to discern. Two close ups shown in Figure 8, keep on
revealing more and more crossed motives at different scales.

*************The notation for the director coefficients x (m, rx) , y (m, ry) follow a similar convention. The
solutions have been labeled with different subindices in r because any of the m3real roots combinations
between them is possible.++

7. The c = 1
2
, non connected set

(a) J
(
o
φ
2
+ 1

2

)
set seen from

2− 4ěx + 1ěy

(b) J
(
o
φ
2
+ 1

2

)
set seen from

0− 4ěx + 0ěy

(c) J
(
o
φ
2
+ 1

2

)
set

seen from 0 − 4ěx +
0ěy, limited to 0 ≤
x ≤ 0.03

(d) Julia set for c = 1
2 .

Fig. 9: Visualization of the non divergent J set of the function
o
φ
2
+ c, with c = 1

2 .

Consider the non divergent set in dynamic space for the constant
o
c = 1

2 + 0 ěx + 0 ěy. The 3D rendering,
shown in figure 9a, reveals a grainy structure in contrast with the continuous rough surface of the previous
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example. A Fatou dust like disconnected set in three dimensions is appreciated. Although there are some
more or less dense regions, it is possible to ’see through’ in any one of them. If c = 1

2 , recall that in C,
the Julia set is not connected since 1

2 is not in the M-set. The 3D rendering suggests that, in a similar

fashion, since 1
2 is not in the Ix-set, the J set in S1+2 is not connected. This remark will be discussed in

more detail in section 8. Let us consider the well known z = 1
2 ±

1
2 i two fixed points in C to begin with;

they are depicted in red in figure 9d. In S1+2, the corresponding two copies of these roots in the s, ěx and

s, ěy planes are given by (16c),
o
φS1+1

x
= 1

2 ±
1
2 ěx and

o
φS1+1

y
= 1

2 ±
1
2 ěy. These last two roots are depicted

in figure 9c. 3D renderings limited to thin regions are particularly difficult to visualize for non connected
sets. In this example, if x is restricted to a 0.01 layer or less, there are hardly any points in the plot. As
the thickness is increased, more bound points are present but the figure is increasingly less similar to a 2D
rendering. A compromise has been chosen, where the layer has been restricted to 0 ≤ x ≤ 0.03, in order
to evince the similarities of the 3D and 2D mappings in figures 9c and the familiar 2D Julia set shown in
figure 9d.

In addition to the two copies of the complex like roots, there are four hypercomplex roots. From (16a),

o
φS1+2\S1+1 =

3

4
±
√
3

4
ěx ±

√
3

4
ěy. (23)

These four fixed points are shown in red in the 2D plot in figure 10c. The 3D rendering of the K
(

o
φ
2
+ 1

2

)

(a) J
(
o
φ
2
+ 1

2

)
set seen from

4 + 0ěx + 0ěy

(b) J
(
o
φ
2
+ 1

2

)
set restricted to

0.74 ≤ s ≤ 0.75, hyper-roots (23) de-
picted with red dots.

(c) 2D rendering of J
(
o
φ
2
+ 1

2

)
,

s = 0.75

Fig. 10: Visualization of the non divergent set in dynamic space of the function
o
f =

o
φ
2
+ 1

2 seen from the
s axis.

set, seen straight from the s axis, is shown in figure 10a. The same viewpoint (slightly magnified), but
restricted to a thin layer 0.74 ≤ s ≤ 0.75, gives the image shown in 10b. It is finally this last image that
resembles the 2D rendering 10c in the hyperimaginary - hyperimaginary plane.

8. Conjectures

Differentiability is a necessary condition for a scator function
o
φ
(o
ζ
)
= f0 + fxěx + fyěy to be holomorphic.

According to a differential quotient criterion, necessary conditions for a function to be differentiable are
[Fernández-Guasti, 2018]:

Theorem 2 [Fernandez-Guasti, 2018]. If a scator function
o
φ : U ⊆ S1+2 → S1+2 of scator variable

o
ζ in

U ⊆ S1+2, is differentiable at the point
o
ζp = z0p + zxpěx + zypěy, then the scalar part of the function f0
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and the director parts of the function fx, fy, are real differentiable C1 functions that satisfy the partial
differential equations

∂f0
∂z0

=
∂fx
∂zx

=
∂fy
∂zy

, (24a)

∂fx
∂z0

= −∂f0
∂zx

,
∂fy
∂z0

= −∂f0
∂zy

(24b)

∂f0
∂zx

∂f0
∂zy

= −∂fx
∂zx

∂fx
∂zy

, (24c)

evaluated at the point
o
ζp.

The partial derivatives involved in (24a) and (24b), resemble the Cauchy-Riemann conditions extended to
a real and two hyperimaginary dimensions. The square function does not satisfy conditions (24a), (24b)
and (24c). Therefore, the square function is not holomorphic anywhere in the scator set. However, it is

scator differentiable for points
o
ζp with y = 0, or x = 0 since then all crossed terms are equal to zero. This

result is expected because the s + x ěx + 0 ěy or the s + 0 ěx + y ěy planes are identical to the complex
plane where the square function is complex holomorphic. The lack of holomorphy according to a differential
quotient criterion of the square function prevents us from evaluating its derivatives and their subsequent
computation at the critical points. The dynamics in a neighborhood of a periodic point. Thus, the classical
fractal classification of points into super-attractive, attractive, indifferent or repelling, depending on the
value of its derivative, cannot be readily performed for the quadratic mapping in the S1+2 scator realm.

In S1+2 it is not possible, according to the differential quotient criterion, to define Fatou or Julia sets in
terms of normal meromorphic families, because the scator quadratic function is not meromorphic. Earlier
on we mentioned zero and infinity,

Sequences not in the J set either go to
o
φS1+0 = 1

2−
√
3
2 ≈ −0.366, or diverge. Tested with many points, 25 it-

erations point 1, .3, .2 goes to −0.366514,−4.17295 ∗ 10−9,−0.000873619, inter-dyn-sols-1.nb. Convergence
is faster in s1+2 point 1, .3, 0 goes to −0.368041, 0.00092023, 0..
conjecture: The Ix-set, provided that nilpotent points are discarded, is the set of parameters where the J
set is connected.

Fundamental dichotomy - either connected or infinite separate sets, Cantor dust

The scator set disjointly splits into two sets: the closure of the repelling periodic points and the open set
of normal (i.e. stable) points.

Case 1. Nilpotent points

r4 − 2
√
2s r3 − 4s2r2 + 2

√
2
(
2s3 + s2

)
r +

(
4s4 + 4s3

)
= 0. (25)

lemma: There is no upper bound b to the scator squared magnitude, such that scators with magnitude
larger than b diverge under the quadratic iteration in parameter space.

9. Conclusions

Dynamics of fixed points

approaches the fixed point

The action of the other three roots on the
o
φinv1 fixed point.

inverse orbit can be evaluated with one of the four possible roots.

richness of points contrasted with inverse orbits of fixed points of c = −1
2 in C.

The S set in Ē1+2
− (s;x, y) has been defined in parameter space in terms of scators whose magnitude does

not tend to infinity under the quadratic iteration. Imaginary scator algebra is a finite dimensional algebra

file:inter-dyn-sols-1.nb
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with the peculiarity that the scator product is commutative but does not distribute over addition. It is
equipped with an order parameter that in addition to the sum of the squared components it also involves
terms with the inverse squared of the scalar component. The quadratic mapping has been justified on
two grounds: i) The scator square function is defined by the scator product operation of an element with
itself, and ii) If the argument of the square function is multiplied by a scalar, the outcome is equivalent to
multiplication by the square of the scalar (Lemma ??). The 3D S set exhibits a rich and intricate boundary
not found in other higher dimensional generalizations of the Mandelbrot set.
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