Diferencia entre revisiones de «Numeros complejos»

De luz-wiki
Sin resumen de edición
Sin resumen de edición
Línea 103: Línea 103:
|}
|}
[[categoría:Matematicas]]
[[categoría:Matematicas]]
----
Aportación por usuario: Usuario:Isela
----

Revisión del 04:26 9 oct 2023

Un número complejo se puede representar mediante una expresión de la forma , donde y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): y son números reales, e Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): i es un símbolo con la propiedad de que . El número complejo también se puede denotar por medio del par ordenado y graficar como un punto en un plano llamado (plano de Argand), donde el eje es el eje real y el eje , el eje imaginario, tal como se muestra en la figura 1.

Figura 1. Números complejos como puntos en el plano de Argand

La parte real del número complejo es el número real la parte imaginaria, el número real .

La suma de dos números complejos se define sumando sus partes reales e imaginarias, respectivamente:

Figura 2. Suma de complejos

El producto de los números complejos se define de la siguiente manera:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): =x_1x_2+x_1y_2i+y_1x_2i+(y_1y_2)i^2

Ya que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): i^2=-1 , lo anterior se transforma en

El complejo conjugado del número complejo , se define como .

Para determinar el cociente de dos números complejos, multiplicamos numerador y denominador por el complejo conjugado del denominador.

El módulo, o valor absoluto de un número complejo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z=x+iy es su distancia al origen. En la figura 3 vemos que si , entonces

Observe que

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): z\tilde{z}=(x+iy)(x-iy)=x^2+xyi-xyi-y^2i^2=x^2+y^2

de modo que

Figura 3. Módulo, Conjugado y opuesto de un número complejo

Esto explica por qué funciona, en general, el procedimiento de división.

Forma polar

Si consideramos todo número complejo

como un punto en el plano de Argand (figura 1)este puede representarse en términos de coordenadas polares.

[1] .Tenemos

,
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \tilde{z}=x+iy=r(cos\theta+i\, sen\theta)

Donde Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): r=|z|=\sqrt{x^2+y^2}

Figura 4. Forma polar de un número complejo

La forma polar de los números complejos proporciona una perspectiva de la multiplicación y la división, Sean Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \tilde{z_1}=r_1(cos\theta_1+isen\theta_1) y expresados en forma polar.Entonces

Con las formulas adición de angulos para coseno y seno, llegamos a

Figura 5. Producto de complejos en forma polar

Entonces al multiplicar dos números complejos se multiplican sus módulos y se suman sus argumentos:[2] ,(figura 3). Un análisis similar muestra que para dividir dos números complejos, se dividen los módulos y se restan los argumentos.


La multiplicación y la división en en forma polar es muy simple y se expresan de la siguiente manera:

En donde utilizamos la fórmula de Euler para expresarlas así.


La fórmula de Euler es:

por lo anterior

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): e^{i(-\theta)}=cos(-\theta)+isen(-\theta)

debido a que por ser una función par y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): sen(-\theta)=-sen(\theta) por ser una función impar

tenemos que


sumando y substrayendo la ecuación (1) y (2) llegamos a

,

Esta misma formula nos permite escribir

Cualquier número complejo se puede representar como la suma de una parte real Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): Re(\tilde{z}) y una parte imaginaria tal como se menciono anteriormente.

En la forma polar donde

y

En el caso particular, como es el de describir una onda armónica en su representación compleja , tenemos la libertad de escoger cualquier parte.[3]

Referencias

  1. Ruel V.Churchill,Variable compleja y aplicaciones,Ed.y McGraw-Hill,1 ed, 1988 pp.14-19
  2. James Stewart,Cálculo,Ed.Thomson,México 2006, pp.A79-A85
  3. Hecht, Óptica, Ed.Pearson, 3ra ed 2006, pp.23-24

Aportación por usuario: Usuario:Isela