Diferencia entre revisiones de «Green's vector identity»

De luz-wiki
Línea 39: Línea 39:
Reassuringly, from the vector relationship ([eq:vec green]), we can go back to the scalar case as shown in appendix [sec:scalar-case]. The curl of a cross product can be written as <math>\nabla\times\left(\mathbf{P}\times\mathbf{Q}\right)=\left(\mathbf{Q}\cdot\nabla\right)\mathbf{P}-\left(\mathbf{P}\cdot\nabla\right)\mathbf{Q}+\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q}\left(\nabla\cdot\mathbf{P}\right)</math>; Green’s vector identity can then be rewritten as
Reassuringly, from the vector relationship ([eq:vec green]), we can go back to the scalar case as shown in appendix [sec:scalar-case]. The curl of a cross product can be written as <math>\nabla\times\left(\mathbf{P}\times\mathbf{Q}\right)=\left(\mathbf{Q}\cdot\nabla\right)\mathbf{P}-\left(\mathbf{P}\cdot\nabla\right)\mathbf{Q}+\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q}\left(\nabla\cdot\mathbf{P}\right)</math>; Green’s vector identity can then be rewritten as


<math>\mathbf{P}\cdot\nabla^{2}\mathbf{Q}-\mathbf{Q}\cdot\nabla^{2}\mathbf{P}=\\
<math>\mathbf{P}\cdot\nabla^{2}\mathbf{Q}-\mathbf{Q}\cdot\nabla^{2}\mathbf{P}=
\nabla\cdot\left[\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q}\left(\nabla\cdot\mathbf{P}\right)-\nabla\times\left(\mathbf{P}\times\mathbf{Q}\right)+\mathbf{P}\times\nabla\times\mathbf{Q}-\mathbf{Q}\times\nabla\times\mathbf{P}\right].</math>
\nabla\cdot\left[\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q}\left(\nabla\cdot\mathbf{P}\right)-\nabla\times\left(\mathbf{P}\times\mathbf{Q}\right)+\mathbf{P}\times\nabla\times\mathbf{Q}-\mathbf{Q}\times\nabla\times\mathbf{P}\right].</math>


Línea 46: Línea 46:
<center><math>\mathbf{P}\cdot\nabla^{2}\mathbf{Q}-\mathbf{Q}\cdot\nabla^{2}\mathbf{P}=\nabla\cdot\left[\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q}\left(\nabla\cdot\mathbf{P}\right)+\mathbf{P}\times\nabla\times\mathbf{Q}-\mathbf{Q}\times\nabla\times\mathbf{P}\right].</math></center>
<center><math>\mathbf{P}\cdot\nabla^{2}\mathbf{Q}-\mathbf{Q}\cdot\nabla^{2}\mathbf{P}=\nabla\cdot\left[\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q}\left(\nabla\cdot\mathbf{P}\right)+\mathbf{P}\times\nabla\times\mathbf{Q}-\mathbf{Q}\times\nabla\times\mathbf{P}\right].</math></center>


This result should prove useful when the divergence and curl of the fields can be established in terms of other quantities, as is the case in electromagnetism. There are several particular cases of interest of this expression: If the fields satisfy Helmholtz equation, the LHS of eq:vec green 2 is zero. Thus, a conserved quantity with zero divergence is obtained; If the fields are curl free so that they can be written in terms of the gradients of scalar functions <math>\alpha</math> and <math>\beta</math>, expression eq:vec green 2 becomes
This result should prove useful when the divergence and curl of the fields can be established in terms of other quantities.
 
<math>\nabla\alpha\cdot\nabla^{2}\left(\nabla\beta\right)-\nabla\beta\cdot\nabla^{2}\left(\nabla\alpha\right)=\nabla\cdot\left[\nabla\alpha\left(\nabla^{2}\beta\right)-\nabla\beta\left(\nabla^{2}\alpha\right)\right].</math>
 
Another identity that may prove useful is obtained from the divergence of ([eq: grad prod]) <math>\nabla\cdot\nabla\left(\mathbf{P}\cdot\mathbf{Q}\right)=\nabla\cdot\left[\left(\mathbf{P}\cdot\nabla\right)\mathbf{Q}+\left(\mathbf{Q}\cdot\nabla\right)\mathbf{P}+\mathbf{P}\times\nabla\times\mathbf{Q}+\mathbf{Q}\times\nabla\times\mathbf{P}\right],</math> invoking the Green’s vector identity ([eq:vec green]) derived above, the Laplacian of the dot product can be expressed in terms of the Laplacians of the factors
Another identity that may prove useful is obtained from the divergence of ([eq: grad prod]) <math>\nabla\cdot\nabla\left(\mathbf{P}\cdot\mathbf{Q}\right)=\nabla\cdot\left[\left(\mathbf{P}\cdot\nabla\right)\mathbf{Q}+\left(\mathbf{Q}\cdot\nabla\right)\mathbf{P}+\mathbf{P}\times\nabla\times\mathbf{Q}+\mathbf{Q}\times\nabla\times\mathbf{P}\right],</math> invoking the Green’s vector identity ([eq:vec green]) derived above, the Laplacian of the dot product can be expressed in terms of the Laplacians of the factors



Revisión del 16:49 19 ago 2012

The second derivative of two vector functions is related to the divergence of the vector functions with first order operators. Namely,

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \mathbf{P}\cdot\nabla^{2}\mathbf{Q}-\mathbf{Q}\cdot\nabla^{2}\mathbf{P}=\nabla\cdot\left[\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q}\left(\nabla\cdot\mathbf{P}\right)+\mathbf{P}\times\nabla\times\mathbf{Q}-\mathbf{Q}\times\nabla\times\mathbf{P}\right].

Introduction

Green’s second identity establishes a relationship between second and (the divergence of) first order derivatives of two scalar functions

where and are two arbitrary scalar fields. This identity is of great importance in physics because continuity equations can thus be established for scalar fields such as mass or energy [1].

Although the second Green’s identity is always presented in vector analysis, only a scalar version is found on textbooks. Even in the specialized literature, a vector version is not easily found. In vector diffraction theory, two versions of Green’s second identity are introduced. One variant invokes the divergence of a cross product [2][3][4]and states a relationship in terms of the curl-curl of the field . This equation can be written in terms of the Laplacians:

However, the terms Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \mathbf{Q}\cdot\left[\nabla\left(\nabla\cdot\mathbf{P}\right)\right]-\mathbf{P}\cdot\left[\nabla\left(\nabla\cdot\mathbf{Q}\right)\right] , could not be readily written in terms of a divergence. The other approach introduces bi-vectors, this formulation requires a dyadic Green function [5][6].

Divergence of two vector fields

Consider that the scalar fields in Green's second identity are the Cartesian components of vector fields, i.e. and . Summing up the equations for each component, we obtain

The LHS according to the definition of the dot product may be written in vector form as

The RHS is a bit more awkward to express in terms of vector operators. Due to the distributivity of the divergence operator over addition, the sum of the divergence is equal to the divergence of the sum, i.e. . Recall the vector identity for the gradient of a dot product

which, written out in vector components is given by Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \nabla\left(\mathbf{P}\cdot\mathbf{Q}\right)=\nabla\sum\limits _{m}p_{m}q_{m}=\sum\limits _{m}p_{m}\nabla q_{m}+\sum\limits _{m}q_{m}\nabla p_{m}. This result is similar to what we wish to evince in vector terms ’except’ for the minus sign. Since the differential operators in each term act either over one vector (say ’s) or the other (Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): q_{m} ’s) , the contribution to each term must be

These results can be rigorously proven to be correct in appendix [sec:Derivation-by-components] through evaluation of the vector components. Therefore, the RHS can be written in vector form as

Putting together these two results, a theorem for vector fields analogous to Green’s theorem for scalar fields is obtained

Reassuringly, from the vector relationship ([eq:vec green]), we can go back to the scalar case as shown in appendix [sec:scalar-case]. The curl of a cross product can be written as Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \nabla\times\left(\mathbf{P}\times\mathbf{Q}\right)=\left(\mathbf{Q}\cdot\nabla\right)\mathbf{P}-\left(\mathbf{P}\cdot\nabla\right)\mathbf{Q}+\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q}\left(\nabla\cdot\mathbf{P}\right) ; Green’s vector identity can then be rewritten as

Since the divergence of a curl is zero, the third term vanishes and the identity can be written as

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \mathbf{P}\cdot\nabla^{2}\mathbf{Q}-\mathbf{Q}\cdot\nabla^{2}\mathbf{P}=\nabla\cdot\left[\mathbf{P}\left(\nabla\cdot\mathbf{Q}\right)-\mathbf{Q}\left(\nabla\cdot\mathbf{P}\right)+\mathbf{P}\times\nabla\times\mathbf{Q}-\mathbf{Q}\times\nabla\times\mathbf{P}\right].

This result should prove useful when the divergence and curl of the fields can be established in terms of other quantities. Another identity that may prove useful is obtained from the divergence of ([eq: grad prod]) invoking the Green’s vector identity ([eq:vec green]) derived above, the Laplacian of the dot product can be expressed in terms of the Laplacians of the factors

If the substitution of the vector identity ([eq:vec green]) is performed eliminating the terms , the Laplacian of the dot product is

Conclusions

Green’s second identity relating the Laplacians with the divergence has been derived for vector fields. No use of bi-vectors or dyadics has been made as in some previous approaches. In diffraction theory, the vector identity was stated before in terms of the curl. However, this earlier formulation had the drawback that the Laplacian could not be invoked without involving extra terms. As a corollary, the awkward terms in eq:vec difrac ident can now be written in terms of a divergence by comparison with eq:vec green 2

This result can be verified by expanding the divergence of a scalar times a vector on the RHS.

The condition imposed by Helmholtz equation can be readily incorporated in the present formulation of Green’s second identity. This result is particularly useful if the vector fields satisfy the wave equation.

[7]

Derivation by components

In order to evaluate consider the first term in three dimensional Cartesian components Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \left(\mathbf{P}\cdot\nabla\right)\mathbf{Q}=\left(p_{x}\frac{\partial}{\partial x}+p_{y}\frac{\partial}{\partial y}+p_{z}\frac{\partial}{\partial z}\right)\left(q_{x}\hat{\mathbf{e}}_{x}+q_{y}\hat{\mathbf{e}}_{y}+q_{z}\hat{\mathbf{e}}_{z}\right) that may be written as

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \left(\mathbf{P}\cdot\nabla\right)\mathbf{Q} = \left(p_{x}\frac{\partial q_{x}}{\partial x}+p_{y}\frac{\partial q_{x}}{\partial y}+p_{z}\frac{\partial q_{x}}{\partial z}\right)\hat{\mathbf{e}}_{x} + \left(p_{x}\frac{\partial q_{y}}{\partial x}+p_{y}\frac{\partial q_{y}}{\partial y}+p_{z}\frac{\partial q_{y}}{\partial z}\right)\hat{\mathbf{e}}_{y} + \left(p_{x}\frac{\partial q_{z}}{\partial x}+p_{y}\frac{\partial q_{z}}{\partial y}+p_{z}\frac{\partial q_{z}}{\partial z}\right)\hat{\mathbf{e}}_{z}.

The curl in the second term is The cross product is The second term is then

that expands to

Evaluate Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \left(\mathbf{P}\cdot\nabla\right)\mathbf{Q}+\mathbf{P}\times\nabla\times\mathbf{Q} in the x direction

canceling out terms

Analogous results are obtained in the other directions so that

that may be written out in vector form as However, the terms can be rearranged as

and thus An equivalent procedure for Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \left(\mathbf{Q}\cdot\nabla\right)\mathbf{P}+\mathbf{Q}\times\nabla\times\mathbf{P} gives

[sec:scalar-case]scalar case

If we take one component vectors, for example, , the vector relationship ([eq:vec green]) becomes Since ,

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): \mathbf{P}\times\nabla\times\mathbf{Q} = \left(p_{x}\frac{\partial q_{x}}{\partial y}\right)\hat{\mathbf{e}}_{y}+\left(p_{x}\frac{\partial q_{x}}{\partial z}\right)\hat{\mathbf{e}}_{z}

and . Therefore Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): p_{x}\nabla^{2}q_{x}-q_{x}\nabla^{2}p_{x}=\nabla\cdot\left[p_{x}\nabla q_{x}-q_{x}\nabla p_{x}\right], we recover Green’s second identity for the functions .


Colegrave88 R. K. Colegrave and M. A. Mannan. Invariants for the time-dependent harmonic oscillator. J. Math. Phys., 29(7):1580–1587, 1988.

Fernandezguasti02 M. Fernández-Guasti and A. Gil-Villegas. Orthogonal functions invariant for the time dependent harmonic oscillator. Physics Letters A, 292:243–245., 2002.

Fernandezguasti03a M. Fernández-Guasti and H. Moya-Cessa. Amplitude and phase representation of quantum invariants for the time dependent harmonic oscillator. Physical Review A, 67(063803):063803–1–5, 2003.

Pedrosa04 I. A. Pedrosa and I. Guedes. Quantum states of a generalized time-dependent inverted harmonic oscillator. Int. J. of Mod. Phys. B, 18(9):1379–1385, 2004.

Lewis67 H. R. Lewis. Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians. Phys. Rev. Lett., 18(13):510–512, 1967.

love1901 A. E. H. Love. The Integration of the Equations of Propagation of Electric Waves. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 197:pp. 1–45, 1901.

stratton1939 J. A. Stratton and L. J. Chu. Diffraction Theory of Electromagnetic Waves. Phys. Rev., 56(1):99–107, Jul 1939.

bruce2010 N. C. Bruce. Double scatter vector-wave Kirchhoff scattering from perfectly conducting surfaces with infinite slopes. Journal of Optics, 12(8):085701, 2010.

franz1950 W Franz. On the Theory of Diffraction. Proceedings of the Physical Society. Section A, 63(9):925, 1950.

tai1972 Chen-To Tai. Kirchhoff theory: Scalar, vector, or dyadic? Antennas and Propagation, IEEE Transactions on, 20(1):114–115, jan 1972.

Arfken70 G. Arfken. Mathematical Methods for Physicists. Academic Press, NY, 1970.

  1. Fernandezguasti04a M. Fernández-Guasti. Complementary fields conservation equation derived from the scalar wave equation. J. Phys. A: Math. Gen., 37:4107–4121, 2004.
  2. love1901 A. E. H. Love. The Integration of the Equations of Propagation of Electric Waves. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 197:pp. 1–45, 1901.
  3. stratton1939 J. A. Stratton and L. J. Chu. Diffraction Theory of Electromagnetic Waves. Phys. Rev., 56(1):99–107, Jul 1939.
  4. bruce2010 N. C. Bruce. Double scatter vector-wave Kirchhoff scattering from perfectly conducting surfaces with infinite slopes. Journal of Optics, 12(8):085701, 2010.
  5. franz1950 W Franz. On the Theory of Diffraction. Proceedings of the Physical Society. Section A, 63(9):925, 1950.
  6. tai1972 Chen-To Tai. Kirchhoff theory: Scalar, vector, or dyadic? Antennas and Propagation, IEEE Transactions on, 20(1):114–115, jan 1972.
  7. I am grateful to A. Camacho Quintana and the referees for useful suggestions for improving this manuscript.